Issue
Korean Journal of Chemical Engineering,
Vol.33, No.4, 1402-1407, 2016
Vapor pressure and Flory-Huggins interaction parameters in binary polymeric solutions
This communication reports two unique relationships for (1) Flory-Huggins interaction parameter (χ) and (2) vapor pressure of solvent (P), which explicitly show their composition dependency. There is no empirical constant in the proposed relationships, and no trial and error and/or data-fitting optimization is required for determination and/or correlation of vapor pressure and Flory-Huggins interaction parameter. A straightforward computational technique for implementation of models is provided. For a number of systems, the calculated data have been compared and evaluated against experimental ones and the reliability and accuracy of proposed relationships was assured. IARD (%) values on the order of 0.05 demonstrate the accuracy of the proposed method.
[References]
  1. Prausnitz JM, Lichtenthaler RN, de Azevedo EG, Molecular Thermodynamics of Fluid-Phase Equilibria 3ed., Prentice Hall (1998).
  2. Keshavarz L, Khansary MA, Shirazian S, Polymer, 73, 1, 2015
  3. Mulder M, Basic Principles of Membrane Technology, 2 Ed., Springer Netherlands, Kluwer, Netherlands, Dordrecht (1996).
  4. Mulder M, MEMBRANE PREPARATION | Phase Inversion Membranes, Elsevier Science Ltd. (2000).
  5. Wohlfarth C, CRC Handbook of Thermodynamic Data of Copolymer Solutions, CRC Press (2001).
  6. Wohlfarth C, CRC Handbook of Thermodynamics Data of Polymer Solutions at Elevated Pressures, CRC Press (2005).
  7. Wohlfarth C, CRC Handbook of Liquid-liquid Equilibrium Data of Polymer Solutions, CRC Press (2007).
  8. Bercea M, Eckelt J, Wolf BA, Ind. Eng. Chem. Res., 48(9), 4603, 2009
  9. Ruzette AVG, Mayes AM, Macromolecules, 34(6), 1894, 2001
  10. Khansary MA, Aroon MA, Fuel, 140, 810, 2015
  11. Geveke DJ, Danner RP, Polym. Eng. Sci., 31, 1527, 1991
  12. Barth C, Wolf BA, Polymer, 41(24), 8587, 2000
  13. Cao B, Henson MA, Annals of the New York Academy of Sciences, 984, 370, 2003
  14. Khansary MA, Aroon MA, Fuel, 142, 306, 2015
  15. Mejia A, Segura H, Fuel, 140, 812, 2015
  16. Polymer Thermodynamics: Liquid Polymer-Containing Mixtures, Springer Verlag Berlin Heidelberg (2011).
  17. Krevelen DWV, Nijenhuis KT, Properties of Polymers:Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions, 4 Ed., Elsevier (2008).
  18. Sanchez I, Stone M, Statistical Thermodynamics of Polymer Solutions and Blends, Wiley (2000).
  19. CRC Handbook of Chemistry and Physics, 90 Ed., CRC Press (2010).
  20. Danner RP, H. Martin S, Handbook of Polymer Solution Thermodynamics, American Institute of Chemical Engineers, 345 East 47 Street, New York (1993).
  21. Kontogeorgis GM, Folas GK, Thermodynamic Models for Industrial Applications: From Classical and Advanced Mixing Rules to Association Theories, 1 Ed., Wiley (2010).
  22. Poling BE, Prausnitz JM, O’Connell JP, Properties of Gases and Liquids, 4 Ed., McGraw-Hill Professional (1987).
  23. Sandler SI, Models for Thermodynamic and Phase Equilibria Calculations, CRC Press (1993).
  24. Boudouris D, Constantinou L, Panayiotou C, Ind. Eng. Chem. Res., 36(9), 3968, 1997
  25. Rodgers PA, J. Appl. Polym. Sci., 48, 1061, 1993
  26. Bird RB, Stewart WE, Lightfoot EN, Transport Phenomena, 2 Ed., Wiley (2006).