Issue
Korean Journal of Chemical Engineering,
Vol.33, No.4, 1391-1401, 2016
Comparative study of zeolite 5A and zeolite 13X in air separation by pressure swing adsorption
The performance of zeolites 5A and 13X is numerically investigated in oxygen separation from air by a two-bed PSA system. The effect of operating variables such as adsorption step time, PH/PL ratio and cycle time was investigated on product purity and recovery. The simulation results showed that nitrogen adsorption capacity on zeolite 13X was slightly more than the one on zeolite 5A. In the completely same operating conditions, zeolite 5A had a larger mass transfer zone than zeolite 13X. Therefore, the adsorption and desorption rate of nitrogen on zeolite 5A is less than zeolite 13X. Moreover, for the equal volume of adsorbed nitrogen on both adsorbents, zeolite 5A is more capable rather than zeolite 13X to desorb much more volume of nitrogen at certain time. Furthermore, for achieving oxygen with purity of 96%, utilizing zeolite 5A is more economical than zeolite 13X, when 5.5
[References]
  1. Grande CA, Advances in Pressure Swing Adsorption for Gas Separation, ISRN Chemical Engineering, Article ID 982934, 2012, 13 (2012), DOI:10.5402/2012/982934.
  2. Rosen M, Mulloth L, Affleck D, Wang Y, Development and Testing of a Temperature-Swing Adsorption Compressor for Carbon Dioxide in Closed-Loop Air Revitalization Systems, SAE Technical Paper 2005-01-2941 (2005), DOI:10.4271/2005-01-2941.
  3. Milton RM, Molecular Sieve Adsorbents, US Patent, 2,882,243 (1959).
  4. Mivechian A, Pakizeh M, Korean J. Chem. Eng., 30(4), 937, 2013
  5. Jang SC, Yang SI, Oh SG, Choi DK, Korean J. Chem. Eng., 28(2), 583, 2011
  6. Kim YH, Lee DG, Moon DK, Byeon SH, Ahn HW, Lee CH, Korean J. Chem. Eng., Available from:10.1007/s11814-013-0201-x., 31(1), 132, 2014
  7. Zaman M, Lee JH, Korean J. Chem. Eng., 30(8), 1497, 2013
  8. Hoshyargar V, Fadaei F, Ashrafizadeh SN, Korean J. Chem. Eng., 32(7), 1388, 2015
  9. Ruthven DM, Farooq S, Knaebel KS, Pressure Swing Adsorption, New York, VCH Publications, Inc. (1994).
  10. Yang RT, Adsorbents: Fundamentals and Applications, New Jersey, Wiley (2003).
  11. Ruthven DM, Principle of Adsorption and Adsorption Processes, New York, Wiley (1984).
  12. Chou CT, Huang WC, Ind. Eng. Chem. Res., 33(5), 1250, 1994
  13. Lin L, Numerical Simulation of Pressure Swing Adsorption Process, Dissertation Presented for the Degree of Bachelor of Science, XIDIAN University, Xi’an, China (1990).
  14. Ritter JA, Liu YJ, Ind. Eng. Chem. Res., 37(7), 2783, 1998
  15. Teague KG, Edgar TF, Ind. Eng. Chem. Res., 38(10), 3761, 1999
  16. Mendes AMM, Costa CAV, Rodrigues AE, Ind. Eng. Chem. Res., 39(1), 138, 2000
  17. Mendes AMM, Costa CAV, Rodrigues AE, Sep. Purif. Technol., 24(1-2), 173, 2001
  18. Wilson SJ, Beh CCK, Webley PA, Todd RS, Ind. Eng. Chem. Res., 40(12), 2702, 2001
  19. Rege SU, Yang RT, Qian KY, Buzanowski MA, Chem. Eng. Sci., 56(8), 2745, 2001
  20. Jee JG, Lee JS, Lee CH, Ind. Eng. Chem. Res., 40(16), 3647, 2001
  21. Jee JG, Lee SJ, Lee CH, Korean J. Chem. Eng., 21(6), 1183, 2004
  22. Jee JG, Park HJ, Haam SJ, Lee CH, Ind. Eng. Chem. Res., 41(17), 4383, 2002
  23. Choong STY, Paterson WR, Scott DM, Jurnal Teknologi, 38, 65, 2003
  24. Santos JC, Portugal AF, Magalhaes FD, Mendes A, Ind. Eng. Chem. Res., 43(26), 8328, 2004
  25. Reynolds SP, Ebner AD, Ritter JA, Ind. Eng. Chem. Res., 45(9), 3256, 2006
  26. Kostroski KP, Wankat PC, Ind. Eng. Chem. Res., 45(24), 8117, 2006
  27. Jee JG, Park MK, Yoo HK, Lee K, Lee CH, Sep. Sci. Technol., 37(5), 3465, 2002
  28. Lee SJ, Jung JH, Moon JH, Jee JG, Lee CH, Ind. Eng. Chem. Res., 46(11), 3720, 2007
  29. Mofarahi M, Ehsan JS, Petroleum Coal, 55(3), 216, 2013
  30. Olney TN, Cann NM, Cooper G, Brion CE, Chem. Phys., 223(1), 59, 1997
  31. Jain S, Moharir AS, Li P, Wozny G, Sep. Purif. Technol., 33(1), 25, 2003