Issue
Korean Journal of Chemical Engineering,
Vol.33, No.4, 1278-1285, 2016
Experimental investigation of CO2 capture using sodium hydroxide particles in a fluidized bed
CO2 capture from air using sodium hydroxide solid sorbent in a laboratory scale fluidized bed reactor was investigated experimentally. The influence of three parameters of temperature, inlet CO2 volume percentage and inlet air flow rate on the CO2 removal rate was studied. Experimental results showed that the optimum rate was at 25 ℃ when the inlet CO2 volume percentage was 1%. The results also showed that the adsorption process was reactive, and the reaction mechanism depended on the reaction temperature. In addition, empirical observation revealed only one adsorption cycle happened at low temperatures (25-30 ℃). As the temperature increased, the second adsorption cycle occurred and, finally, CO2 desorption cycle took place in the range of 90-115 ℃.
[References]
  1. Kim DM, Cho J, Korean J. Chem. Eng., 28(1), 22, 2011
  2. Benamor A, Aroua MK, Korean J. Chem. Eng., 24(1), 16, 2007
  3. Karadas F, Atilhan M, Aparicio S, Energy Fuels, 24, 5817, 2010
  4. Yang H, Xu Z, Fan M, Gupta R, Slimane R, Bland A, J. Environ. Sci., 20, 14, 2008
  5. Duke M, Ladewig B, Smart S, Rudolph V, Costa JDD, Front. Chem. Sci. Eng., 4, 184, 2010
  6. Dutcher B, Fan MH, Leonard B, Sep. Purif. Technol., 80(2), 364, 2011
  7. Kianpour M, Sobati MA, Shahhosseini S, Chem. Eng. Res. Des., 90(11), 2041, 2012
  8. Kim K, Kim D, Park YK, Lee KS, Int. J. Greenhouse Gas Control, 26, 135, 2014
  9. Gupta T, Ghosh R, Int. J. Greenhouse Gas Control, 32, 172, 2015
  10. Shahrestani MM, Rahimi A, Environ. Eng. Res., 19, 299, 2014
  11. Plaza MG, Duran I, Rubiera F, Pevida C, Appl. Energy, 144, 182, 2015
  12. Alfea M, Ammendola P, Gargiulo V, Raganatib F, Chirone R, Proceedings of the Combustion Institute, 35, 2801, 2015
  13. Seo H, Min DY, Kang NY, Choi WC, Park S, Park YK, Lee DK, Korean J. Chem. Eng., 32(1), 51, 2015
  14. Nikulshina V, Gebald C, Steinfeld A, Chem. Eng. J., 146(2), 244, 2009
  15. Butler JW, Lim CJ, Grace JR, Chem. Eng. Res. Des., 89(9A), 1794, 2011
  16. Masnadi MS, Grace JR, Bi XTT, Ellis N, Lim CJ, Butler JW, Energy, 83, 326, 2015
  17. Blamey J, Manovic V, Anthony EJ, Dugwell DR, Fennell PS, Fuel, 150, 269, 2015
  18. Pourebrahimi S, Kazemeini M, Babakhani EG, Taheri A, Microporous Mesoporous Mater., 218, 144, 2015
  19. Cheng D, Liu Y, Wang H, Weng X, Wu Z, J. Environ. Sci., 38, 1, 2015
  20. Duelli G, Charitos A, Diego ME, Stavroulakis E, Dieter H, Scheffknecht G, Int. J. Greenhouse Gas Control, 33, 103, 2015
  21. Antzara A, Heracleous E, Lemonidou AA, Appl. Energy, 156, 331, 2015
  22. Kunii D, Levenspiel O, Fluidization engineering, 2nd Ed., Butterworth-Heinemann, Boston (1991).
  23. Ayobi M, Shahhosseini S, Behjat Y, J. Taiwan. Inst. Chem. E., 45, 421, 2013
  24. Choi JH, Yi CK, Jo SH, Ryu HJ, Park YC, Korean J. Chem. Eng., 31(2), 194, 2014
  25. Zhang WB, Liu H, Sun CG, Drage TC, Snape CE, Chem. Eng. Sci., 116, 306, 2014
  26. Nikulshina V, Ayesa N, Galvez ME, Steinfeld A, Chem. Eng. J., 140(1-3), 62, 2008
  27. Cameron-cole, Salt creek phases III/IV environmental assessment, U.S. Department of the Interior (2006).
  28. Lee JB, Ryu CK, Baek JI, Lee JH, Eom TH, Kim SH, Ind. Eng. Chem. Res., 47(13), 4465, 2008
  29. Geldart D, Powder Technol., 7, 285, 1973
  30. Siriwardane RV, Robinson C, Shen M, Simonyi T, Energy Fuels, 21(4), 2088, 2007
  31. Liang Y, Carbon dioxide capture from flue gas using regenerable sodium-based sorbents, Master of Science in Chemical Engineering, Tsinghua University, Beijing, China (2003).
  32. Zhao CW, Chen XP, Anthony EJ, Jiang X, Duan LB, Wu Y, Dong W, Zhao CS, Prog. Energy Combust. Sci., 39(6), 515, 2013
  33. Yi CK, Jo SH, Seo Y, Park SD, Moon KH, Yoo JS, Stud. Surf. Sci. Catal., 159, 501, 2006
  34. Yi CK, Jo SH, Seo Y, Lee JB, Ryu CK, Int. J. Greenhouse Gas Control, 1, 31, 2007