Issue
Korean Journal of Chemical Engineering,
Vol.33, No.4, 1261-1266, 2016
Inhibition of char deposition using a particle bed in heating section of supercritical water gasification
Supercritical water gasification (SCWG) has attracted attention as a technology for utilizing wet biomass. We used a fluidized bed of alumina particles to prevent blockage of a SCWG reactor. A glucose solution was heated in the reactor with and without fluidized alumina particles. In the absence of alumina particles, char particles formed homogeneously in the reactor, but the use of a fluidized bed resulted in accumulation of char particles at the reactor’s exit rather than inside the reactor. Therefore, the fluidized bed was effective at preventing blockage of the reactor. However, the alumina particles did not remove deposits from the reactor’s walls. Instead, the fluidized bed caused larger char particles to form, preventing their adhesion to the reactor’s wall.
[References]
  1. Amin S, Reid R, Modell M, Am. Soc. Mech. Eng., 8, 75-ENA, 1975
  2. Yu DH, Aihara M, Antal MJ, Energy Fuels, 7, 574, 1993
  3. Antal MJ, Allen SG, Schulman D, Xu XD, Divilio RJ, Ind. Eng. Chem. Res., 39(11), 4040, 2000
  4. Matsumura Y, Minowa T, Potic B, Kersten SRA, Prins W, van Swaaij WPM, van de Beld B, Elliott DC, Neuenschwander GG, Kruse A, Antal MJ, Biomass Bioenerg., 29(4), 269, 2005
  5. Matsumura Y, Yokoyama SY, Biomass Bioenerg., 29(5), 304, 2005
  6. Chuntanapum A, Matsumura Y, Ind. Eng. Chem. Res., 48(22), 9837, 2009
  7. Minowa T, Zhen F, Ogi T, J. Supercrit. Fluids, 13(1), 253, 1998
  8. Chuntanapum A, Yong TLK, Miyake S, Matsumura Y, Ind. Eng. Chem. Res., 47(9), 2956, 2008
  9. Chuntanapum A, Matsumura Y, Ind. Eng. Chem. Res., 49(9), 4055, 2010
  10. Chuntanapum A, Shii T, Matsumura Y, J. Chem. Eng. Jpn., 44(6), 431, 2011
  11. Samanmulya T, Matsumura Y, J. Jpn. Inst. Energy, 92, 894, 2013
  12. Samanmulya T, Inoue S, Inoue T, Kawai Y, Kubota H, Munetsuna H, Noguchi T, Matsumura Y, J. Jpn. Inst. Energy, 93, 936, 2014
  13. Sinag A, Kruse A, Schwarzkopf V, Eng. Life Sci., 3, 469, 2003
  14. Sinag A, Kruse A, Schwarzkopf V, Ind. Eng. Chem. Res., 42(15), 3516, 2003
  15. Wada Y, Oyama K, Yamasaki T, Uchiyama I, Yamamura Y, Kubota H, Matsumura Y, Minowa T, Noguchi T, Kawai Y, J. Jpn. Inst. Energy, 92, 1159, 2013
  16. Matsumura Y, Xu X, Antal MJ, Carbon, 35, 819, 1997
  17. Matsumura Y, Hara S, Kaminaka K, Yamashita Y, Yoshida T, Inoue S, Kawai Y, Minowa T, Noguchi T, Shimizu Y, J. Jpn. Pet. Inst., 56, 1, 2013
  18. Sealock LJ, Elliott DC, Baker EG, Butner RS, Ind. Eng. Chem. Res., 32, 1535, 1993
  19. Elliott DC, Hart TR, Neuenschwander GG, Ind. Eng. Chem. Res., 45(11), 3776, 2006
  20. Elliott DC, Neuenschwander GG, Phelps MR, Hart TR, Zacher AH, Silva LJ, Ind. Eng. Chem. Res., 38(3), 879, 1999
  21. Elliott DC, Phelps MR, Sealock LJ, Baker EG, Ind. Eng. Chem. Res., 33(3), 566, 1994
  22. Elliott DC, Sealock LJ, Baker EG, Ind. Eng. Chem. Res., 32, 1542, 1993
  23. Elliott DC, Sealock LJ, Baker EG, Ind. Eng. Chem. Res., 33(3), 558, 1994
  24. Minowa T, Fang Z, J. Chem. Eng. Jpn., 31(3), 488, 1998
  25. Schmieder H, Abeln J, Boukis N, Dinjus E, Kruse A, Kluth M, Petrich G, Sadri E, Schacht M, J. Supercrit. Fluids, 17(2), 145, 2000
  26. Kruse A, Meier D, Rimbrecht P, Schacht M, Ind. Eng. Chem. Fundam., 39, 4842, 2000
  27. Anis S, Zainal ZA, Renew. Sust. Energ. Rev., 15, 2355, 2011
  28. Munetsuna H, Tamai M, Noda Y, Matsumura Y, J. Jpn. Inst. Energy, 89, 1173, 2010
  29. Matsumura Y, Minowa T, Int. J. Hydrog. Energy, 29(7), 701, 2004
  30. Erkiaga A, Lopez G, Amutio M, Bilbao J, Olazar M, Fuel Process. Technol., 116, 292, 2013
  31. Lu YJ, Zhao L, Han Q, Wei LP, Zhang XM, Guo LJ, Wei JJ, Int. J. Multiph. Flow, 49, 78, 2013