Issue
Korean Journal of Chemical Engineering,
Vol.33, No.4, 1220-1231, 2016
Production of a biodiesel additive in a stirred basket reactor using immobilized lipase:Kinetic and mass transfer analysis
A laboratory-scale stirred basket reactor (SBR) was constructed to study the synthesis of an n-butyl oleate ester using Novozym 435. An ester yield of approximately 98% was obtained after 6 h using an equimolar substrate ratio, 3.5 g of enzyme, a reaction temperature of 40 oC, and an impeller speed of 200 rpm. The kinetic data were modeled as a ping-pong bi-bi mechanism using a non-linear regression technique. Statistical analysis of the results showed that a model that incorporated the inhibitory effect of n-butanol yielded the best fit with the following parameters: Vmax=24.8mmol L-1 min-1, Km, oleic acid=190.8mM, Km, n-butanol=544.7 mM, and Ki, n-butanol=158.3mM. Mass transfer effects on the enzyme kinetics were also studied, and the absence of internal and external diffusion limitations on the reaction in the SBR was confirmed by considering calculated values of the Thiele modulus and the Damkohler number. Novozym 435 exhibited satisfactory performance in repeated-batch experiments using SBR.
[References]
  1. Hajar M, Vahabzadeh F, Ind. Crop. Prod., 52, 430, 2014
  2. Hajar M, Vahabzadeh F, Ind. Crop. Prod., 59, 252, 2014
  3. Salih N, Salimon J, Yousif E, Ind. Crop. Prod., 34, 1089, 2011
  4. Salimon J, Salih N, Yousif E, Eur. J. Lipid Sci. Technol., 112, 519, 2010
  5. Lee JH, Kim SB, Yoo HY, Lee JH, Park C, Han SO, Kim SW, Korean J. Chem. Eng., 30(6), 1272, 2013
  6. Lee JH, Kim SB, Yoo HY, Lee JH, Han SO, Park C, Kim SW, Korean J. Chem. Eng., 30(6), 1335, 2013
  7. Ghamgui H, Karra-Chaabouni M, Gargouri Y, Enzyme Microb. Technol., 35(4), 355, 2004
  8. Balcao VM, Paiva AL, Malcata FX, Enzyme Microb. Technol., 18(6), 392, 1996
  9. Doran PM, Bioprocess engineering principles, 2nd Ed., Academic Press (2013).
  10. Do DD, Chem. Eng. J., 18, B51, 1984
  11. Purich DL, Enzyme kinetics: Catalysis control: A reference of theory and best-practice methods, Elsevier (2010).
  12. Lowry RR, Tinsley IJ, J. Am. Oil Chem. Soc., 53, 470, 1976
  13. Kwon DY, Rhee JS, J. Am. Oil Chem. Soc., 63, 89, 1986
  14. Lapin LL, Modern engineering statistics, Belmont CA, USA, Wadsworth Publishing Company (1997).
  15. Chaibakhsh N, Abdul Rahman MB, Vahabzadeh F, Abd-Aziz S, Basri M, Salleh AB, Biotechnol. Bioeng., 15, 846, 2010
  16. Basri M, Kassim MA, Mohamad R, Ariff AB, J. Mol. Catal. B-Enzym., 85-86, 214, 2013
  17. Hajar M, Shokrollahzadeh S, Vahabzadeh F, Monazzami A, Enzyme Microb. Technol., 45(3), 188, 2009
  18. Zaidi A, Gainer JL, Carta G, Mrani A, Kadiri T, Belarbi Y, Mir A, J. Biotechnol., 93, 209, 2002
  19. Yadav GD, Devendran S, Process Biochem., 47, 496, 2012
  20. Bezbradica D, Mijin D, Siler-Marinkovic S, Knezevic Z, J. Mol. Catal. B-Enzym., 38, 11, 2006
  21. Suchmacher M, Geller M, Practical biostatistics, Elsevier (2012).
  22. Blanch HW, Clark DS, Biochemical Engineering, Marcel Dekker, New York (1997).
  23. Wilke CR, Chang P, AIChE J., 1, 264, 1955
  24. Tyn MT, Calus WF, Processing, 21, 16, 1975
  25. Joback KG, Reid RC, Chem. Eng. Commun., 57, 233, 1987
  26. Carberry JJ, Chemical and catalytic reaction engineering, McGraw-Hill, New York (1976).
  27. Dong HP, Wang YJ, Zheng YG, J. Mol. Catal. B-Enzym., 66, 90, 2010
  28. Chulalaksananukul W, Condoret JS, Delorme P, Willemot RM, Febs Lett., 276, 181, 1990
  29. Durbin J, Watson GS, Biometrika., 38, 159, 1951
  30. Remero MD, Calvo L, Alba C, Daneshfar A, J. Biotechnol., 127, 269, 2007
  31. Daneshfar A, Ghaziaskar HS, Shiri L, Manafi MH, Nikorazm M, Abassi S, Biochem. Eng. J., 37, 279, 2007
  32. Pouchert CJ, Behnke J, The Aldrich Library of 13C and 1H FT NMR Spectra, Aldrich Chemical Co. (1993).
  33. Chowdhury A, Chakraborty R, Mitra D, Biswas D, Ind. Crop. Prod., 52, 783, 2014