Issue
Korean Journal of Chemical Engineering,
Vol.33, No.4, 1211-1219, 2016
A pore-scale model for microfibrous ammonia cracking microreactors via lattice Boltzmann method
Microfibrous microreactors with high reactive surface-to-volume ratio are good choices for ammonia cracking, which is one of the main strategies for CO-free hydrogen production. In the current study, a numerical model based on the lattice Boltzmann method (LBM) is presented to investigate ammonia cracking microreactors with coupled physiochemical thermal processes at the pore scale. Several sets of transport phenomena such as fluid flow, species transport, heat transfer and chemical reaction are taken into account. Moreover, to model the species transport in the ammonia cracking microreactor an active approach is applied for the first time. The model is validated and then employed to simulate the reactive transport in five different microreactors with dissimilar structural parameters. Comparison of the results shows that the fibers orientation is an effective geometric parameter that can greatly influence the hydrogen production efficiency.
[References]
  1. Ehsani M, Gao Y, Gay SE, Emadi A, Modern electric, hybrid electric and fuel cell vehicels, CRC Press, London (2012).
  2. Larminie J, Dicks A, Fuel cell systems explained, Wiley, Chichester (2003).
  3. Wang MM, Li JF, Chen L, Lu Y, Int. J. Hydrog. Energy, 34(4), 1710, 2009
  4. Worz O, Jackel KP, Richter T, Wolf A, Chem. Eng. Technol., 24(2), 138, 2001
  5. Jensen KF, Chem. Eng. Sci., 56(2), 293, 2001
  6. Kolb G, Hessel V, Chem. Eng. J., 98(1-2), 1, 2004
  7. Karakaya M, Keskin S, Avci AK, Appl. Catal. A: Gen., 411, 114, 2012
  8. Lerou JJ, Harold MP, Ryley J, Ashmead J, O’Brien TC, Johnson M, Perrotto J, Blaisddell CT, Rensi TA, Nyquist J, in Microsystem technology for chemical and biological microreactors, Ehrfield W, Eds., DECHEMA, New York (1996).
  9. Chiuta S, Everson RC, Neomagus HWJP, van der Gryp P, Bessarabov DG, Int. J. Hydrog. Energy, 38(35), 14968, 2013
  10. Shin MS, Park N, Park MJ, Jun KW, Ha KS, Chem. Eng. J., 234, 23, 2013
  11. Shin MS, Park N, Park MJ, Cheon JY, Kang JK, Jun KW, Ha KS, Fuel Process. Technol., 118, 235, 2014
  12. Shin DY, Ha KS, Park MJ, Kwak G, Lee YJ, Jun KW, Fuel, 158, 826, 2015
  13. Chen S, Doolen GD, Annu. Rev. Fluid Mech., 30, 329, 1998
  14. Zeiser T, Lammers P, Klemm E, Li YW, Bernsdorf J, Brenner G, Chem. Eng. Sci., 56(4), 1697, 2001
  15. Freund H, Zeiser T, Huber F, Klemm E, Brenner G, Durst F, Emig G, Chem. Eng. Sci., 58(3-6), 903, 2003
  16. Nijemeisland M, Dixon AG, AIChE J., 50(5), 906, 2004
  17. Sullivan SP, Sani FM, Johns ML, Gladden LF, Chem. Eng. Sci., 60(12), 3405, 2005
  18. Manjhi N, Verma N, Salem K, Mewes D, Chem. Eng. Sci., 61(8), 2510, 2006
  19. Kao PH, Ren TF, Yang RJ, Int. J. Heat Mass Transf., 50(21-22), 4243, 2007
  20. Verma N, Salem K, Mewes D, Chem. Eng. Sci., 62(14), 3685, 2007
  21. Chen L, Kang QJ, He YL, Tao WQ, Int. J. Hydrog. Energy, 37(19), 13943, 2012
  22. Sukop MC, Thorne DT, Lattice Boltzmann Modeling, An Introduction for Geoscientists and Engineers, Springer, Heidelberg (2007).
  23. Satoh A, Introduction to practice of molecular simulation, Elsevier Inc., Amsterdam (2011).
  24. Bhatnagar PL, Gross EP, Krook M, Phys. Rev., 94, 511, 1954
  25. Mohamad AA, Lattice Boltzmann Method-Fundamentals and Engineering Applications with Computer Codes, Springer, Heidelberg (2011).
  26. Succi S, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond Numerical Mathematics And Scientific Computation, Clarendon Press, Oxford (2001).
  27. Gunstensen AK, Rothman DH, Zaleski S, Zanetti G, Phys. Rev., A, 43, 4320, 1991
  28. Shan X, Chen H, Phys. Rev. E, 47, 1815, 1993
  29. Swift MR, Osborn WR, Yeomans JM, Phys. Rev. Lett., 75, 830, 1995
  30. Chellappa AS, Fischer CM, Thomson WJ, Appl. Catal. A: Gen., 227(1-2), 231, 2002
  31. Kamali MR, Sundaresan S, Van den Akker HEA, Gillissen JJJ, Chem. Eng. J., 207-208, 587, 2012
  32. Molaeimanesh GR, Akbari MH, J. Power Sources, 258, 89, 2014
  33. Molaeimanesh GR, Akbari MH, Korean J. Chem. Eng., 32(3), 397, 2015
  34. Liu Y, Wang H, Li J, Lu Y, Wu H, Xue Q, Chen L, Appl. Catal. A: Gen., 328(1), 77, 2007
  35. Zou Q, He X, Phys. Fluids, 9, 1591, 1997