Issue
Korean Journal of Chemical Engineering,
Vol.33, No.4, 1134-1152, 2016
Matrix based method for synthesis of main intensified and integrated distillation sequences
The objective of many studies in this area has involved access to a column-sequencing algorithm enabling designers and researchers alike to generate a wide range of sequences in a broad search space, and be as mathematically and as automated as possible for programing purposes and with good generality. In the present work an algorithm previously developed by the authors, called the matrix method, has been developed much further. The new version of the algorithm includes thermally coupled, thermodynamically equivalent, intensified, simultaneous heat and mass integrated and divided-wall column sequences which are of gross application and provide vast saving potential both on capital investment, operating costs and energy usage in industrial applications. To demonstrate the much wider searchable space now accessible, a three component separation has been thoroughly examined as a case study, always resulting in an integrated sequence being proposed as the optimum.
[References]
  1. Segovia-Hernandez JG, Bonilla-Petriciolet A, Salcedo-Estrada LI, Korean J. Chem. Eng., 23(5), 689, 2006
  2. Sargent RWH, Gaminibandara K, Optimum Design of Plate Distillation Column. Optimization in Action, Dixon, L.W. C. Academic Press, London (1976).
  3. Sargent RWH, Comput. Chem. Eng., 22(1-2), 31, 1998
  4. Agrawal R, Ind. Eng. Chem. Res., 35(4), 1059, 1996
  5. Agrawal R, AIChE J., 49(2), 379, 2003
  6. Giridhar A, Agrawal R, Comput. Chem. Eng., 34(1), 73, 2010
  7. Fidkowski ZT, AIChE J., 52(6), 2098, 2006
  8. Caballero JA, Grossmann IE, AIChE J., 49(11), 2864, 2003
  9. Caballero JA, Grossmann IE, Comput. Chem. Eng., 28(11), 2307, 2004
  10. Caballero JA, Grossmann IE, Ind. Eng. Chem. Res., 45(25), 8454, 2006
  11. Caballero JA, Grossmann IE, Comput. Chem. Eng., 61, 118, 2014
  12. Errico M, Rong BG, Tola G, Turunen I, Chem. Eng. Process., 48(4), 907, 2009
  13. Rong BG, Errico M, Chem. Eng. Process., 62, 1, 2012
  14. Errico M, Rong BG, Torres-Ortega CE, Segovia-Hernandez JG, Comput. Chem. Eng., 62, 1, 2014
  15. Ivakpour J, Kasiri N, Ind. Eng. Chem. Res., 48(18), 8635, 2009
  16. Shah VH, Agrawal R, AIChE J., 56(7), 1759, 2010
  17. Shenvi AA, Shah VH, Zeller JA, Agrawal R, AIChE J., 58(8), 2479, 2012
  18. Shah PB, Kokossis AC, Comput. Chem. Eng., 25(4-6), 867, 2001
  19. Shah PB, Kokossis AC, AIChE J., 48(3), 527, 2002
  20. Kim JK, Wankat PC, Ind. Eng. Chem. Res., 43(14), 3838, 2004
  21. Rong BG, Kraslawski A, Nystrom L, Comput. Chem. Eng., 24(2-7), 247, 2000
  22. Rong BG, Kraslawski A, Nystrom L, Comput. Chem. Eng., 25(4-6), 807, 2001
  23. Rong BG, Kraslawski A, Ind. Eng. Chem. Res., 41(23), 5716, 2002
  24. Rong BG, Kraslawski A, AIChE J., 49(5), 1340, 2003
  25. Rong BG, Kraslawski A, Turunen I, Ind. Eng. Chem. Res., 43(18), 5904, 2004
  26. Rong BG, Turunen I, Chem. Eng. Res. Des., 84(A12), 1095, 2006
  27. Rong BG, Turunen I, Chem. Eng. Res. Des., 84(A12), 1117, 2006
  28. Kim YH, Ind. Eng. Chem. Res., 40(11), 2460, 2001
  29. Kim YH, Chem. Eng. J., 89(1-3), 89, 2002
  30. Kim SB, Ruiz GJ, Linninger AA, Ind. Eng. Chem. Res., 49(14), 6499, 2010
  31. Kim SB, Linninger AA, Ind. Eng. Chem. Res., 49(18), 8670, 2010
  32. Wang XH, Hu YD, Li YG, Korean J. Chem. Eng., 25(3), 402, 2008
  33. Yoo H, Binns M, Jang MJ, Cho H, Kim JK, Korean J. Chem. Eng., Under Publication, 32, 2015
  34. Hohmann EC, Sander MT, Dunhford H, Chem. Eng. Commun., 17, 273, 1982
  35. Agrawal R, Fidkowski ZT, AIChE J., 44(11), 2565, 1998
  36. Shenvi AA, Shah VH, Agrawal R, AIChE J., 59(1), 272, 2013
  37. Asprion N, Kaibel G, Chem. Eng. Process., 49(2), 139, 2010
  38. Duc Long NV, Lee M, Korean J. Chem. Eng., 29(5), 567, 2012
  39. Minh LQ, Long NVD, Lee M, Korean J. Chem. Eng., 29(11), 1500, 2012
  40. Long NVD, Lee MY, Korean J. Chem. Eng., 30(2), 286, 2013
  41. Seader JD, Henley EJ, Roper DK, Separation Process Principles, Chemical and Biochemical Operations, Wiley, New York, USA (2011).
  42. Douglas JM, Conceptual Design of Chemical Processes, McGraw-Hill: United States (1988).
  43. Seider WD, Seader JD, Lewin DR, Widagdo S, Product and Process Design Principles, 3rd Ed., Wiley, Asia (2010).