Issue
Korean Journal of Chemical Engineering,
Vol.33, No.3, 838-843, 2016
Selective oxidation of H2S to sulfur over CeO2-TiO2 catalyst
The catalytic oxidation of hydrogen sulfide (H2S) to elemental sulfur was studied over CeO2-TiO2 catalysts. The synthesized catalysts were characterized by various techniques such as X-ray diffraction, BET, X-ray photoelectron spectroscopy (XPS), temperature-programmed desorption of ammonia, and scanning electron microscopy (SEM). Catalytic performance studies of the CeO2-TiO2 catalysts showed that H2S was successfully converted to elemental sulfur without considerable emission of sulfur dioxide. CeO2-TiO2 catalysts with Ce/Ti=1/5 and 1/3 exhibited the highest H2S conversion, possibly due to the uniform dispersion of metal oxides, high surface area, and high amount of acid sites.
[References]
  1. Khudenko BM, Gitman GM, Wechsler TEP, J. Environ. Eng.-ASCE, 119, 1233, 1993
  2. Eow JS, Environ. Prog. Sustain., 21, 143, 2002
  3. Lagasm JA, Borsboom J, Brben PH, Oil Gas J., 10, 68, 1988
  4. Ketter R, Liermann N, Oil Gas J., 11, 63, 1982
  5. Kettner R, Lubcke T, Liermann N, Eur. Patent, 0078690 (1983).
  6. van Nisselrooy PFMT, Lagas JA, Catal. Today, 16, 263, 1993
  7. Borsboom J, Goar BG, Heijkoop G, Lagas JA, Sulphur, 220, 44, 1992
  8. Zhang X, Tang Y, Qu S, Da J, Hao Z, ACS Catal., 5, 1053, 2015
  9. Shin MY, Nam CM, Park DW, Chung JS, Appl. Catal. A: Gen., 211(2), 213, 2001
  10. Li KT, Chi ZH, Appl. Catal. B: Environ., 31(3), 173, 2001
  11. Li KT, Chi ZH, Appl. Catal. A: Gen., 206(2), 197, 2001
  12. Park DW, Park BK, Park DK, Woo HC, Appl. Catal. A: Gen., 223(1-2), 215, 2002
  13. Kim BG, Ju WD, Kim I, Woo HC, Park DW, Solid State Ion., 172(1-4), 135, 2004
  14. Kim MI, Park DW, Park SW, Yang X, Choi JS, Suh DJ, Catal. Today, 111(3-4), 212, 2006
  15. Li KT, Huang CH, Ind. Eng. Chem. Res., 45(21), 7096, 2006
  16. Bineesh KV, Cho DR, Kim SY, Jermy BR, Park DW, Catal. Commun., 9, 2040, 2008
  17. Bineesh KV, Kim DK, Kim MI, Park DW, Appl. Clay Sci., 53, 204, 2011
  18. Bineesh KV, Kim DK, Kim MI, Selvaraj M, Park DW, J. Chem. Soc.-Dalton Trans., 40, 3938, 2011
  19. Bineesh KV, Kim DK, Kim DW, Cho HJ, Park DW, Energy Environ. Sci., 3, 302, 2010
  20. Bineesh KV, Kim MI, Park MS, Lee KY, Park DW, Catal. Today, 175(1), 183, 2011
  21. Bineesh KV, Kim MI, Lee GH, Selvaraj M, Hyun K, Park DW, J. Ind. Eng. Chem., 18(5), 1845, 2012
  22. Kim MI, Lee GH, Kim DW, Kang DH, Park DW, Korean J. Chem. Eng., 31(12), 2162, 2014
  23. Soriano MD, Concepcion P, Botella P, Nieto JML, Top. Catal., 54, 729, 2011
  24. Hadjiivanov KI, Klissurski DG, Chem. Soc. Rev., 25, 61, 1996
  25. Hoffmann MR, Martin ST, Choi WY, Bahnemann DW, Chem. Rev., 95(1), 69, 1995
  26. Flytzani-Stephanopoulos M, Zhu TL, Li Y, Catal. Today, 62(2-3), 145, 2000
  27. Watamabe S, Ma X, Song C, J. Phys. Chem. E, 113, 14249, 2009
  28. Shi ZM, Yu WG, Bayar X, Scr. Mater., 50, 885, 2004
  29. Lopez T, Rojas F, Alexander-Katz R, Galindo F, Balankin A, Buljan A, J. Solid State Chem., 177, 1873, 2004
  30. Yang SX, Zhu WP, Jiang ZP, Chen ZX, Wang JB, Appl. Surf. Sci., 252(24), 8499, 2006
  31. Luo MF, Chen J, Chen LS, Lu JQ, Feng ZC, Li C, Chem. Mater., 13, 197, 2001
  32. Raj KJA, Viswanathan B, Indian J. Chem. Sect A-Inorg. Bio-Inorg. Phys. Theor. Anal. Chem., 49, 401, 2010
  33. Jiang B, Wu Z, Liu Y, J. Hazard. Mater., 145, 1249, 2009
  34. Gao X, Jiang Y, Zhong Y, Luo ZY, Cen KF, J. Hazard. Mater., 174(1-3), 734, 2010
  35. Yang SX, Zhu WP, Jiang ZP, Chen ZX, Wang JB, Appl. Surf. Sci., 252(24), 8499, 2006
  36. Burroughs P, Hammett A, Orchard AF, Thornton G, J. Chem. Soc.-Dalton Trans., 17, 1686, 1976
  37. Tsyganenko AA, Pozdnyakov DV, Filimonov VN, J. Mol. Struct., 29, 299, 1975