Issue
Korean Journal of Chemical Engineering,
Vol.33, No.2, 623-628, 2016
Impact of seed loading ratio on the growth kinetics of mono-ammonium phosphate under isothermal batch crystallization
The effect of seed load ratio on the growth kinetics of Mono-ammonium phosphate (MAP) under isothermal batch crystallization was investigated quantitatively. A direct parameter estimation method was proposed and applied to extract the growth kinetic parameters from a simple crystallization model using our experimental solution concentration decline data. The method assured the globally best parameters to be obtained and was found less sensitive to experimental errors. The linear growth constants kg and the growth order g were found to be in the range of 1,000-2,600 μm·min.1 and 0.93-1.12, respectively, for MAP crystallized at 40 oC. Both parameters decreased significantly with increase of seed load ratio and kg even showed a strong linear decline trend. The effective crystallization time also decreased with the seed mass. The proposed methodology could be extended to study the effect of other operation variables such as temperature and initial supersaturation on the crystal growth rate.
[References]
  1. Mullin JW, Crystallization, 4th Ed., Butterworth-Heinemann, Oxford (2001).
  2. Cisternas LA, Vasquez CM, Swaney RE, AIChE J., 52(5), 1754, 2006
  3. Tavare NS, Garside J, Chivate MR, Ind. Eng. Chem. Process Des. Dev., 19, 653, 1980
  4. Tavare NS, Chem. Eng. Commun., 61, 259, 1987
  5. Hojjati H, Rohani S, Chem. Eng. Process., 44(9), 949, 2005
  6. Kubota N, Doki N, Yokota M, Sato A, Powder Technol., 121(1), 31, 2001
  7. Hsu CW, Ward JD, AIChE J., 59(2), 390, 2013
  8. Esther J, Sukla LB, Pradhan N, Panda S, Korean J. Chem. Eng., 32(1), 1, 2015
  9. Ward JD, Mellichamp DA, Doherty MF, AIChE J., 52(6), 2046, 2006
  10. Kim DY, Paul M, Repke JU, Wozny G, Yang DR, Korean J. Chem. Eng., 26(5), 1220, 2009
  11. Mullin JW, Amatavivadhana A, J. Appl. Chem., 17, 151, 1967
  12. Mullin JW, Amatavivadhana A, Chakraborty M, J. Appl. Chem., 20, 153, 1970
  13. Utomo J, Maynard N, Asakuma Y, Maeda K, Fukui K, Tade MO, Adv. Powder Technol., 21(4), 392, 2010
  14. Utomo J, Asakuma Y, Maynard N, Maeda K, Fukui K, Tade MO, Chem. Eng. J., 156(3), 594, 2010
  15. Jagadesh D, Kubota N, Yokota M, Doki N, Sato A, J. Chem. Eng. Jpn., 32(4), 514, 1999
  16. Buchanan GH, Winner GB, Ind. Eng. Chem., 12, 448, 1920
  17. Eysseltova J, Dirkse TPI, J. Phys. Chem. Ref Data, 27, 1290, 1998
  18. Long BW, Ind. Eng. Chem. Res., 50(11), 7019, 2011
  19. Long BW, Li J, Zhang RR, Wan L, Fluid Phase Equilib., 297(1), 113, 2010
  20. Long B, Yang Z, Fluid Phase Equilib., 266(1-2), 38, 2008
  21. Long BW, Li J, Song YH, Du JQ, Ind. Eng. Chem. Res., 50(13), 8354, 2011
  22. Carbone MN, Judge RA, Etzel MR, Biotechnol. Bioeng., 91(1), 84, 2005
  23. Carbone MN, Etzel MR, Biotechnol. Bioeng., 93(6), 1221, 2006
  24. Mohameed HA, Abu-Jdayil B, Al Khateeb M, Chem. Eng. Process., 41(4), 297, 2002
  25. Antonious MS, Ramsis MN, Youssef AO, Monatsh. Chem., 127, 15, 1996