Issue
Korean Journal of Chemical Engineering,
Vol.33, No.2, 616-622, 2016
Preparation of nanoporous activated carbon and its application as nano adsorbent for CO2 storage
Nanoporous activated carbons, as adsorbent for CO2 storage, were prepared from walnut shells via two chemical processes including phosphoric acid treatment and KOH activation at high temperature. Specific surface area and porosities were controlled by KOH concentration and activation temperature. The obtained adsorbents were characterized by N2 adsorption at 77.3 K. Their carbon dioxide adsorption capacities were measured at different pressures at 290 K by using volumetric adsorption equipment. The KOH-treated nanoporous carbons typically led to the production of high specific surface areas and high micropore volumes and showed better performance for CO2 adsorptions. The maximum experimental value for adsorption capacity happened when pressure increased from 5 to 10 bar (1.861-2.873mmol·g.1). It was found that in order to improve the highest capacity of CO2 adsorption for KOH-modified carbon (9.830-18.208mmol·g.1), a KOH: C weight ratio of 3.5 and activation temperature of 973 K were more suitable for pore development and micro-mesopore volume enhancement.
[References]
  1. Siriwardance R, Shen M, Fisher E, Poston J, Smith DH, U.S Department of energy, National energy technology laboratory, 3610 Collins Ferry Road, Morgantown, WV 26507-0880.
  2. Na BK, Koo KK, Eum HM, Lee H, Song HK, Korean J. Chem. Eng., 18(2), 220, 2001
  3. Hwang KS, Gong SY, Lee WK, Korean J. Chem. Eng., 8(3), 148, 1991
  4. Xu XC, Song CS, Andresen JM, Miller BG, Scaroni AW, Energy Fuels, 16(6), 1463, 2002
  5. Siriwardane RV, Shen MS, Fisher EP, Energy Fuels, 19(3), 1153, 2005
  6. Bansal RC, Dannet J, Stoectdi F, Activated carbon, Marcel Dekker (1998).
  7. Buczek B, Swiatkowski A, Zietek S, Trznadel BJ, Fuel, 79, 1247, 2000
  8. Daud WMAW, Shabuddin W, Sulaiman MZ, Carbon, 38, 1925, 2000
  9. Arenillas A, Smith KM, Drage TC, Snape CE, Fuel, 84(17), 2204, 2005
  10. Drage TC, Arenillas A, Smith KM, Pevida C, Piippo S, Snape CE, Fuel, 86(1-2), 22, 2007
  11. Gray ML, Soong Y, Champagne KJ, Baltrus J, Stevens RW, Toochinda P, Chuang SSC, Sep. Purif. Technol., 35(1), 31, 2004
  12. Huang HY, Yang RT, Chinn D, Munson CL, Ind. Eng. Chem. Res., 42(12), 2427, 2003
  13. Maroto-Valer MM, Tang Z, Zhang YZ, Fuel Process. Technol., 86(14-15), 1487, 2005
  14. Przepiorski J, Skrodzewicz M, Morawsid AW, Appl. Surf. Sci., 225, 335, 2004
  15. Plaza MG, Pevida C, Arenillas A, Rubiera F, Pis JJ, Fuel, 86(14), 2204, 2007
  16. Plaza MG, Pevida C, Arias B, Fermoso J, Arenillas A, Rubiera F, Pis JJ, J. Therm. Anal. Calorim., 92, 601, 2008
  17. Gil RR, Ruiz B, Lozano MS, Fuente E, J. Anal. Appl. Pyrolysis, 110, 194, 2014
  18. Balsamo M, Budinova T, Erto A, Lancia A, Petrova B, Petrov N, Tsyntsarski B, Sep. Purif. Technol., 116, 214, 2013
  19. Robertson C, Mokaya R, Microporous Mesoporous Mater., 179, 151, 2013
  20. Guo B, Chang L, Xie K, J. Nat. Gas Chem., 15, 223, 2006
  21. Himeno S, Komatsu T, Fujita S, J. Chem. Eng. Data, 50(2), 369, 2005
  22. Sevilla M, Fuertes AB, J. Colloid Interface Sci., 366(1), 147, 2012
  23. Kim BJ, Cho KS, Park SJ, J. Colloid Interface Sci., 342(2), 575, 2010
  24. Meng LY, Park SJ, Mater. Chem. Phys., 137(1), 91, 2012
  25. Otowa T, Tanibata R, Itoh M, Gas Sep. Purif., 7, 241, 1993
  26. Py X, Goetz V, Plantard G, Chem. Eng. Process., 47(3), 308, 2008
  27. Meng LY, Park SJ, Bull. Korean Chem. Soc., 33, 3749, 2012
  28. Romanos J, Beckner M, Rash T, Firlej L, Kuchta B, Yu P, Suppes G, Wexler C, Pfeifer P, Nanotechnology, 23, 015401, 2012