Issue
Korean Journal of Chemical Engineering,
Vol.33, No.2, 587-593, 2016
CO2 fixation and lipid production by microalgal species
Microalgal species Nannochloropsis limnetica, Botryococcus braunii, and Stichococcus bacillaris were compared for their ability to grow, remove CO2, and accumulate lipids in their biomass under CO2-enriched atmosphere. Overall, N. limnetica outperformed the other two cultures and distinctly exhibited higher specific growth rate (0.999 d.1) and CO2 fixation rate (0.129 gL.1 d.1) with a high specific lipid yield (40% w/w). The volumetric CO2 fixation rate for all three species was validated with biomass productivity and mass transfer methods (P<0.005 and R2=0. 98). At 10% CO2, N. limnetica showed one-and-a-half times more carbon fixation efficiency over B. braunii, and S. bacillaris. On the other hand, total fatty acids of N. limnetica dispalyed an apparent increase in oleic acid. Whereas, under similar conditions, N. limnetica exhibited reduced eicosapentaenoic acid. These findings suggest that at high CO2 conditions, N. limnetica proved to be an efficient CO2 capture algal system and can be considered for biofuel applications.
[References]
  1. Lee B, Choi GG, Choi YE, Sung M, Park MS, Yang JW, Korean J. Chem. Eng., 31(6), 1036, 2014
  2. Mutanda T, Ramesh D, Karthikeyan S, Kumari S, Anandraj A, Bux F, Bioresour. Technol., 102(1), 57, 2011
  3. Ronda SR, Parupudi PLC, Vemula S, Tumma S, Botlagunta M, Settaluri VS, Lele S, Sharma S, Kandala C, Korean J. Chem. Eng., 31(10), 1839, 2014
  4. Francisco EC, Neves DB, Jacob-Lopes E, Franco TT, J. Chem. Technol. Biotechnol., 85(3), 395, 2010
  5. Krienitz L, Wirth M, Limnologica, 36, 204, 2006
  6. Cheng PF, Ji B, Gao LL, Zhang W, Wang JF, Liu TZ, Bioresour. Technol., 138, 95, 2013
  7. Olivieri G, Marzocchella A, Andreozzi R, Pinto G, Pollio A, J. Chem. Technol. Biotechnol., 86(6), 776, 2011
  8. Liu JY, Mukherjee J, Hawkes JJ, Wilkinson SJ, J. Chem. Technol. Biotechnol., 88(10), 1807, 2013
  9. Mus F, Toussaint JP, Cooksey KE, Fields MW, Gerlach R, Peyton BM, Carlson RP, Appl. Microbiol. Biotechnol., 97(8), 3625, 2013
  10. Yoo C, Jun SY, Lee JY, Ahn CY, OH HM, Bioresour. Technol., 101, S71, 2010
  11. Chiu SY, Kao CY, Tsai MT, Ong SC, Chen CH, Lin CS, Bioresour. Technol., 100(2), 833, 2009
  12. Olivieri G, Garganoa I, Andreozzia R, Marottaa R, Marzocchellaa A, Pintob G, Polliob A, Chem. Eng. Trans., 27, 127, 2012
  13. Olivieri G, Gargano I, Andreozzi R, Marotta R, Marzocchella A, Pinto G, Pollio A, Biochem. Eng. J., 74, 8, 2013
  14. Huang YT, Lee HT, Lai CW, J. Nanosci. Nanotechnol., 13, 2117, 2013
  15. Li SW, Luo SJ, Guo RB, Bioresour. Technol., 136, 267, 2013
  16. Toledo-Cervantes A, Morales M, Novelo E, Revah S, Bioresour. Technol., 130, 652, 2013
  17. De Morais MG, Costa JAV, J. Biotechnol., 129, 439, 2007
  18. Widjaja A, Chien CC, Ju YH, J. Taiwan Inst. Chem. E., 40, 13, 2009
  19. Islam MA, Ayoko GA, Brown R, Stuart D, Heimann K, Procedia. Eng., 56, 591, 2013
  20. Montoya EYO, Casazza AA, Aliakbarian B, Perego P, Converti A, de Carvalho JCM, Biotechnol. Prog., 30(4), 916, 2014
  21. Yusof YAM, Basari JMH, Mukti NA, Sabuddin R, Muda AR, Sulaiman S, Makpol S, Ngah WZW, Afr. J. Biotechnol., 10, 13536, 2013
  22. Tsuzuki M, Ohnuma E, Sato N, Takaku T, Kawaguchi A, Plant Physiol., 93, 851, 1990
  23. Muradyan EA, Klyachko-Gurvich GL, Tsoglin LN, Sergeyenko TV, Pronina NA, Russ. J. Plant Physiol., 51, 53, 2004
  24. Hoshida H, Ohira T, Minematsu A, Akada R, Nishizawa Y, J. Appl. Phycol., 17, 29, 2005
  25. Largeau C, Casadevall E, Berkaloff C, Dhamelincourt P, Phytochemistry, 19, 1043, 1980
  26. Shen Y, Yuan WQ, Adv. Mater. Res., 393, 655, 2012
  27. Zhu C, Lee Y, J. Appl. Phycol., 9, 189, 1997
  28. Ono E, Cuello J, Biosystems Eng., 96, 129, 2007
  29. Folch J, Lees M, Sloane-Stanley G, J. Biol. Chem., 226, 497, 1957
  30. Lepage G, Roy CC, J. Lipid Res., 25, 1391, 1984
  31. Bergman TL, Incropera FP, Lavine AS, DeWitt DP, Fundamentals of heat and mass transfer, Seventh Ed., John Wiley and Sons, New York (2011).
  32. Ge YM, Liu JZ, Tian GM, Bioresour. Technol., 102(1), 130, 2011
  33. Dayananda C, Sarada R, Rani MU, Shamala TR, Ravishankar GA, Biomass Bioenerg., 31(1), 87, 2007
  34. Krienitz L, Hepperle D, Stich HB, Weiler W, Phycologia, 39, 19, 2000
  35. Tang DH, Han W, Li PL, Miao XL, Zhong JJ, Bioresour. Technol., 102(3), 3071, 2011
  36. Tsuzuki M, Gantar M, Aizawa K, Miyachi S, Plant Cell Physiol., 27, 737, 1986
  37. Dickson LG, Galloway RA, Patterson GW, Plant. Physiol., 44, 1413, 1969
  38. Hoffmann M, Marxen K, Schulz R, Vanselow KH, Mar. Drugs, 8, 2526, 2010
  39. Pal D, Khozin-Goldberg I, Cohen Z, Boussiba S, Appl. Microbiol. Biotechnol., 90(4), 1429, 2011
  40. Chrismadha T, Borowitzka MA, J. Appl. Phycol., 6, 67, 1994
  41. Knothe G, Energy Fuels, 22(2), 1358, 2008