Issue
Korean Journal of Chemical Engineering,
Vol.33, No.2, 582-586, 2016
Esterification of acetic and oleic acids within the Amberlyst 15 packed catalytic column
A packed column system was used to study the esterification of acetic and oleic acids by the macro-porous acidic resin, Amberlyst 15. All reactions were at a constant temperature (75 oC) and catalyst mass (3 g). The impact of column flow rate conditions and the molar fatty acid to ethanol feedstock ratio on ester production is reported. The maximum ester production was noted at a flow rate of 0.25mL/min. The maximum observed ester yield for acetic acid (95.2±0.5%) and oleic acid (43.8±1.3%) was observed at an acid:ethanol molar ratio of 1 : 3 and 1 : 1, respectively. The difference in yield indicates the importance of the fatty acid chain length to the reaction.
[References]
  1. Pirola C, Manenti F, Galli F, Bianchi CL, Chem. Eng. Trans., 37, 553, 2014
  2. Yin P, Chen L, Wang Z, Qu RJ, Liu XG, Xu Q, Ren SH, Fuel, 102, 499, 2012
  3. Peng-Lim B, Ganesan S, Maniam GP, Khairuddean M, Efendi J, Energy Conv. Manag., 65, 392, 2013
  4. Demirbas A, Energy Conv. Manag., 50(11), 2782, 2009
  5. Demirbas A, Appl. Energy, 88(1), 17, 2011
  6. US Department of Energy, DOE/GO-102008-2542, www.eere.energy.gov/cleancities accessed date: 11.08.2014 (2008).
  7. Tokunaga K, Konan DE, Appl. Energy, 125, 123, 2014
  8. Russbueldt BME, Hoelderich WF, Appl. Catal. A: Gen., 362(1-2), 47, 2009
  9. Chongkhong S, Tongurai C, Chetpattananondh R, Renew. Energy, 34(4), 1059, 2009
  10. Leung DYC, Wu X, Leung MKH, Appl. Energy, 87(4), 1083, 2010
  11. Banerjee A, Chakraborty R, Resour. Conserv. Recycl., 53, 490, 2009
  12. Sharma YC, Agrawal S, Singh B, Frometa AEN, Can. J. Chem. Eng., 90(2), 483, 2012
  13. Huang GH, Chen F, Wei D, Zhang XW, Chen G, Appl. Energy, 87(1), 38, 2010
  14. Boro J, Thakur AJ, Deka D, Fuel Process. Technol., 92(10), 2061, 2011
  15. Hayyan A, Alam MZ, Mirghani MES, Kabbashi NA, Hakimi NINM, Siran YM, Tahiruddin S, Bioresour. Technol., 101(20), 7804, 2010
  16. Giri BY, Rao KN, Devi BLAP, Lingaiah N, Suryanarayana I, Prasad RBN, Catal. Commun., 6, 788, 2005
  17. Lam MK, Lee KT,Mohamed AR, Biotechnol. Adv., 28, 500, 2010
  18. Park JY, Kim DK, Lee JS, Bioresour. Technol., 101, S62, 2010
  19. Park JY, Wang ZM, Kim DK, Lee JS, Renew. Energy, 35(3), 614, 2010
  20. Hayyan A, Hashim MA, Mirghani MES, Hayyan M, AlNashef IM, Korean J. Chem. Eng., 30(6), 1229, 2013
  21. Yu MJ, Jo YB, Kim SG, Lim YK, Jeon JK, Park SH, Kim SS, Park YK, Korean J. Chem. Eng., 28(12), 2287, 2011
  22. Tesser R, Casale L, Verde D, Di Serio M, Santacesaria E, Chem. Eng. J., 157(2-3), 539, 2010
  23. Son SM, Kimura H, Kusakabe K, Bioresour. Technol., 102(2), 2130, 2011
  24. Lucena IL, Saboya RMA, Oliveira JFG, Rodrigues ML, Torres AEB, Cavalcante CL, Parente EJS, Silva GF, Fernandes FAN, Fuel, 90(2), 902, 2011
  25. de la Cuesta PJM, Martinez ER, Perez FIP, Sarria FR, Can. J. Chem. Eng., 77(6), 1169, 1999
  26. Yu WF, Hidajat K, Ray AK, Appl. Catal. A: Gen., 260(2), 191, 2004
  27. Park JY, Lee JS, Wang ZM, Kim DK, Korean J. Chem. Eng., 27(6), 1791, 2010
  28. Jamal Y, Luo G, Kuo CH, Rabie A, Boulanger B, J. Food Process Eng., 37, 27, 2014
  29. Feng YH, Zhang AQ, Li JX, He BQ, Bioresour. Technol., 102(3), 3607, 2011
  30. Food Chemicals Codex, Institute of Medicine (U.S.), Committee on Food Chemicals Codex National Academies Press (2003).
  31. Barnwala BK, Sharma MP, Sustain. Energy Rev., 9, 363, 2005
  32. Kocsisova T, Cvengros J, Lutisan J, Eur. J. Lipid Sci. Technol., 107, 87, 2005
  33. Marchetti JM, Miguel VU, Errazu AF, Fuel, 86(5-6), 906, 2007
  34. Basumatary S, Deka DC, Der Chemica Sinica, 3, 1384, 2012
  35. Al-Arafi N, Salimon J, E-Journal Chem., 9, 99, 2012