Issue
Korean Journal of Chemical Engineering,
Vol.33, No.2, 514-526, 2016
Properties of LiNi0.8Co0.1Mn0.1O2 as a high energy cathode material for lithium-ion batteries
Nickel-rich layered materials are prospective cathode materials for use in lithium-ion batteries due to their higher capacity and lower cost relative to LiCoO2. In this work, spherical Ni0.8Co0.1Mn0.1(OH)2 precursors are successfully synthesized through a co-precipitation method. The synthetic conditions of the precursors - including the pH, stirring speed, molar ratio of NH4OH to transition metals and reaction temperature - are investigated in detail, and their variations have significant effects on the morphology, microstructure and tap-density of the prepared Ni0.8Co0.1Mn0.1 (OH)2 precursors. LiNi0.8Co0.1Mn0.1O2 is then prepared from these precursors through a reaction with 5% excess LiOH· H2O at various temperatures. The crystal structure, morphology and electrochemical properties of the Ni0.8Co0.1Mn0.1 (OH)2 precursors and LiNi0.8Co0.1Mn0.1O2 were investigated. In the voltage range from 3.0 to 4.3 V, LiNi0.8Co0.1Mn0.1O2 exhibits an initial discharge capacity of 193.0mAh g-1 at a 0.1 C-rate. The cathode delivers an initial capacity of 170.4 mAh g-1 at a 1 C-rate, and it retains 90.4% of its capacity after 100 cycles.
[References]
  1. Kraytsberg A, Ein-Eli Y, Adv. Energy Mater., 2, 922, 2012
  2. Zaghib K, Mauger A, Groult H, Goodenough J, Julien C, Materials, 6, 1028, 2013
  3. Ellis BL, Lee KT, Nazar LF, Chem. Mater., 3, 691, 2010
  4. Liu F, Song S, Xue D, Zhang H, Nanoscale Res. Lett., 7, 149, 2012
  5. Goodenough JB, Kim Y, Chem. Mater., 22, 587, 2010
  6. Mizushima K, Jones PC, Wiseman PJ, Goodenough JB, Mater. Res. Bull., 15, 783, 1980
  7. Whittingham MS, Chem. Rev., 104(10), 4271, 2004
  8. Ozawa K, Solid State Ion., 69(3-4), 212, 1994
  9. Wang Z, Wang Z, Guo H, Peng W, Li X, Ceram. Int., 41, 469, 2015
  10. Amatucci GG, Tarascon JM, Klein LC, Solid State Ion., 83(1-2), 167, 1996
  11. Tarascon JM, Armand M, Nature, 414, 359, 2001
  12. Julien CM, Mauger A, Zaghib K, Groult H, Inorganics, 2, 132, 2014
  13. Kalyani P, Kalaiselvi N, Sci. Technol. Adv. Mater., 6, 689, 2005
  14. Sun YK, Chen ZH, Noh HJ, Lee DJ, Jung HG, Ren Y, Wang S, Yoon CS, Myung ST, Amine K, Nat. Mater., 11(11), 942, 2012
  15. Abraham DP, Twesten RD, Balasubramanian M, Petrov I, McBreen J, Amine K, Electrochem. Commun., 4, 620, 2002
  16. Hwang BJ, Tsai YW, Carlier D, Ceder G, Chem. Mater., 15, 3676, 2003
  17. Zhang S, Deng C, Fu BL, Yang SY, Ma L, Powder Technol., 198(3), 373, 2010
  18. Saavedra-Arias JJ, Karan NK, Pradhan DK, Kumar A, Nieto S, Thomas R, Katiyar RS, J. Power Sources, 183(2), 761, 2008
  19. Lu HQ, Zhou HT, Svensson AM, Fossdal A, Sheridan E, Lu SG, Vullum-Bruer F, Solid State Ion., 249, 105, 2013
  20. Fey GTK, Chen JG, Wang ZF, Yang HZ, Kumar TP, Mater. Chem. Phys., 87(2-3), 246, 2004
  21. Fey GTK, Subramanian V, Lu CZ, Solid State Ion., 152-153, 83, 2002
  22. Fey GTK, Shiu RF, Subramanian V, Chen JG, Chen CL, J. Power Sources, 103(2), 265, 2002
  23. Ling-jun LI, Xin-hai LI, Zhi-xing W, Ling W, Jun-chao Z, Jin-hui L, Trans. Nonferrous Met. Soc. China., 20, 279, 2010
  24. Zhang Y, Cao H, Zhang J, Xia BJ, Solid State Ion., 177(37-38), 3303, 2006
  25. Zhang B, Li L, Zheng J, J. Alloy. Compd., 520, 190, 2012
  26. Li LJ, Li XH, Wang ZX, Guo HJ, Yue P, Chen W, Wu L, Powder Technol., 206(3), 353, 2011
  27. Saavedra-Arias JJ, Rao CV, Shojan J, Manivannan A, Torres L, Ishikawa Y, Katiyar RS, J. Power Sources, 211, 12, 2012
  28. Choo S, Kim HY, Yoon DY, Choi W, Oh SH, Ju JB, Ko JM, Jang H, Cho WI, Korean J. Chem. Eng., 31(5), 905, 2014
  29. Wu KC, Wang F, Gao LL, Li MR, Xiao LL, Zhao LT, Hu SJ, Wang XJ, Xu ZL, Wu QG, Electrochim. Acta, 75, 393, 2012
  30. Belharouak I, Lu W, Vissers D, Amine K, Electrochem. Commun., 8, 329, 2006
  31. Ying JR, Wan CR, Jiang CY, Li YX, J. Power Sources, 99(1-2), 78, 2001
  32. Cheralathan KK, Kang NY, Park HS, Lee YJ, Choi WC, Ko YS, Park YK, J. Power Sources, 195(5), 1486, 2010
  33. Lee MH, Kang Y, Myung ST, Sun YK, Electrochim. Acta, 50(4), 939, 2004
  34. Zhang S, Deng C, Fu BL, Yang SY, Ma L, Powder Technol., 198(3), 373, 2010
  35. Fu C, Li G, Luo D, Li Q, Fan J, Li L, ACS Appl. Mater. Interfaces, 6, 15822, 2014
  36. Lin F, Markus IM, Doeff MM, Xin HL, Sci. Rep., 4, 5694, 2014
  37. Luo D, Li GS, Fu CC, Zheng J, Fan JM, Li Q, Li LP, J. Power Sources, 276, 238, 2015
  38. Son JT, Cairns E, Korean J. Chem. Eng., 24(5), 888, 2007
  39. Sekizawa O, Hasegawa T, Kitamura N, Idemoto Y, J. Power Sources, 196(16), 6651, 2011
  40. Eom J, Kim MG, Cho J, J. Electrochem. Soc., 155(3), A239, 2008
  41. Bang H, Kim DH, Bae YC, Prakash J, Sun YK, J. Electrochem. Soc., 155(12), A952, 2008
  42. Chen YP, Zhang Y, Chen BJ, Wang ZY, Lu C, J. Power Sources, 256, 20, 2014
  43. Liu K, Yang GL, Dong Y, Shi T, Chen L, J. Power Sources, 281, 370, 2014
  44. Zhao JQ, Aziz S, Wang Y, J. Power Sources, 247, 95, 2014
  45. Lee KS, Myung ST, Amine K, Yashiro H, Sun YK, J. Electrochem. Soc., 154(10), A971, 2007