Issue
Korean Journal of Chemical Engineering,
Vol.33, No.2, 490-499, 2016
COx-free hydrogen and carbon nanofibers production by methane decomposition over nickel-alumina catalysts
Nickel catalysts supported on mesoporous nanocrystalline gamma alumina with various nickel loadings were prepared and employed for thermocatalytic decomposition of methane into COx-free hydrogen and carbon nanofibers. The prepared catalysts with different nickel contents exhibited mesoporous structure with high surface area in the range of 121.3 to 66.2m2g.1. Increasing in nickel content decreased the pore volume and increased the crystallite size. The catalytic results revealed that the nickel content and operating temperature both play important roles on the catalytic performance of the prepared catalysts. The results showed that increasing in reaction temperature increased the initial conversion of catalysts and significantly decreased the catalyst lifetime. Scanning electron microscopy (SEM) analysis of the spent catalysts evaluated at different temperatures revealed the formation of intertwined carbon filaments. The results showed that increasing in reaction temperature decreased the diameters of nanofibers and increased the formation of encapsulating carbon.
[References]
  1. Abbas HF, Daud WMAW, Int. J. Hydrog. Energy, 35(3), 1160, 2010
  2. Li YD, Li DX, Wang GW, Catal. Today, 162(1), 1, 2011
  3. Wuebbles DJ, Jain AK, Fuel Process. Technol., 71(1-3), 99, 2001
  4. Amin AM, Croiset E, Epling W, Int. J. Hydrog. Energy, 36(4), 2904, 2011
  5. Jang HT, Cha WS, Korean J. Chem. Eng., 24(2), 374, 2007
  6. Jung JU, Nam W, Yoon KJ, Han GY, Korean J. Chem. Eng., 24(4), 674, 2007
  7. Amin AM, Croiset E, Constantinou C, Epling W, Int. J. Hydrog. Energy, 37(11), 9038, 2012
  8. Arandiyan H, Li J, Ma L, Hashemnejad SM, Mirzaei MZ, Chen J, Chang H, Liu C, Wang C, Chen L, J. Ind. Eng. Chem., 18(6), 2103, 2012
  9. Marban G, Vales-Solis T, Int. J. Hydrog. Energy, 32(12), 1625, 2007
  10. Lua AC, Wang HY, Appl. Catal. B: Environ., 132-133, 469, 2013
  11. Kothari R, Buddhi D, Sawhney R, Renew. Sust. Energ. Rev., 12, 553, 2008
  12. Holladay JD, Hu J, King DL, Wang Y, Catal. Today, 139, 244, 2009
  13. Khalesi A, Arandiyan H, Parvari M, Chin. J. Catal., 29, 960, 2008
  14. Arandiyan H, Peng Y, Liu CX, Chang HZ, Li JH, J. Chem. Technol. Biotechnol., 89(3), 372, 2014
  15. Kim MH, Lee EK, Jun JH, Han GY, Kong SJ, Lee BK, Lee TJ, Yoon KJ, Korean J. Chem. Eng., 20(5), 835, 2003
  16. Navarro RM, Pena MA, Fierro JLG, Chem. Rev., 107(10), 3952, 2007
  17. Overpeck JT, Cole JE, Annu. Rev. Environ. Resour., 31, 1, 2006
  18. Qian WH, Liu TA, Wang ZW, Wei FA, Li ZF, Luo GH, Li YD, Appl. Catal. A: Gen., 260(2), 223, 2004
  19. Chen JL, Li YD, Li ZQ, Zhang XX, Appl. Catal. A: Gen., 269(1-2), 179, 2004
  20. Lee SC, Seo HJ, Han GY, Korean J. Chem. Eng., 30(9), 1716, 2013
  21. Yu MF, Files BS, Arepalli S, Ruoff RS, Phys. Rev. Lett., 84, 5552, 2000
  22. Saraswat SK, Pant KK, J. Natural Gas Sci. Eng., 13, 52, 2013
  23. Ermakova MA, Ermakov DY, Catal. Today, 77(3), 225, 2002
  24. Li Y, Zhang B, Tang X, Xu Y, Shen W, Catal. Commun., 7, 380, 2006
  25. Dupuis AC, Prog. Mater. Sci., 50(8), 929, 2005
  26. Helveg S, Lopez-Cartes C, Sehested J, Hansen PL, Clausen BS, Rostrup-Nielsen JR, Abild-Pedersen F, Norskov JK, Nature, 427, 426, 2004
  27. Abild-Pedersen F, Norskov JK, Rostrup-Nielsen JR, Sehested J, Helveg S, Phys. Rev. B, 73, 115419, 2006
  28. Wang WH, Wang HY, Yang Y, Jiang SB, Int. J. Hydrog. Energy, 37(11), 9058, 2012
  29. Guevara JC, Wang JA, Chen LF, Valenzuela MA, Salas P, Garcia-Ruiz A, Toledo JA, Cortes-Jacome MA, Angeles-Chavez C, Novaro O, Int. J. Hydrog. Energy, 35(8), 3509, 2010
  30. Ashok J, Raju G, Reddy PS, Subrahmanyam M, Venugopal A, Int. J. Hydrog. Energy, 33(18), 4809, 2008
  31. Ashok J, Subrahmanyam M, Venugopal A, Int. J. Hydrog. Energy, 33(11), 2704, 2008
  32. Leofanti G, Padovan M, Tozzola G, Venturelli B, Catal. Today, 41(1-3), 207, 1998
  33. Alipour Z, Rezaei M, Meshkani F, Fuel, 129, 197, 2014
  34. Awadallah AE, Aboul-Enein AA, Aboul-Gheit AK, Renew. Energy, 57, 671, 2013
  35. Wang R, Li YH, Shi RH, Yang MM, J. Mol. Catal. A-Chem., 344(1-2), 122, 2011
  36. Wu M, Hercules DM, J. Phys. Chem., 83, 2003, 1979
  37. Li CP, Chen YW, Thermochim. Acta, 256(2), 457, 1995
  38. Ermakova MA, Ermakov DY, Kuvshinov GG, Appl. Catal. A: Gen., 201(1), 61, 2000
  39. Zavarukhin SG, Kuvshinov GG, Appl. Catal. A: Gen., 272(1-2), 219, 2004
  40. Li Y, Chen J, Ma Y, Zhao J, Qin Y, Chang L, Chem. Commun., 12, 1141, 1999
  41. Baker R, Barber M, Harris P, Feates F, Waite R, J. Catal., 26, 51, 1972
  42. Chen JL, Li XM, Li YD, Qin YN, Chem. Lett., 32(5), 424, 2003
  43. Snoeck JW, Froment GF, Fowles M, J. Catal., 169(1), 240, 1997
  44. Takenaka S, Ishida M, Serizawa M, Tanabe E, Otsuka K, J. Phys. Chem. B, 108(31), 11464, 2004
  45. Quddus MR, Hossain MM, de Lasa HI, Catal. Today, 210, 124, 2013
  46. Echegoyen Y, Suelves I, Lazaro MJ, Moliner R, Palacios JM, J. Power Sources, 169(1), 150, 2007
  47. Suelves I, Lazaro MJ, Moliner R, Corbella BM, Palacios JM, Int. J. Hydrog. Energy, 30(15), 1555, 2005
  48. Li Y, Zhang BC, Xie XW, Liu JL, Xu YD, Shen WJ, J. Catal., 238(2), 412, 2006