Issue
Korean Journal of Chemical Engineering,
Vol.33, No.2, 473-480, 2016
High temperature water gas shift reaction over Fe-Cr-Cu nanocatalyst fabricated by a novel method
Fe-Cr-Cu nanocatalyst was synthesized through an inorganic-precursor thermolysis approach and exploited for high temperature water gas shift reaction. The results demonstrated that the method used for the nanocatalyst fabrication led to smaller crystallite size (32.9 nm) and higher BET surface area (127.3m2/g) compared to those of a reference sample (65.5 nm, 78.6m2/g) prepared by co-precipitation conventional method. Furthermore, the obtained data for catalytic activity showed that the catalyst prepared via inorganic precursor has better activity than the reference sample in all studied temperatures (350-500 oC) and also exhibited higher catalytic activity than a commercial Fe-Cr-Cu catalyst in higher temperatures (more than 450 oC).
[References]
  1. Noor T, Gil MV, Chen D, Appl. Catal. B: Environ., 150-151, 585, 2014
  2. Lin XY, Zhang Y, Yin L, Chen CQ, Zhan YY, Li DL, Int. J. Hydrog. Energy, 39(12), 6424, 2014
  3. Gnanamani MK, Jacobs G, Shafer WD, Sparks DE, Hopps S, Thomas GA, Davis BH, Top. Catal., 57, 612, 2014
  4. Andersson J, Lundgren J, Appl. Energy, 130, 484, 2014
  5. Popa T, Xu GQ, Barton TF, Argyle MD, Appl. Catal. A: Gen., 379(1-2), 15, 2010
  6. Kappen P, Grunwaldt JD, Hammershoi BS, Troger L, Clausen BS, J. Catal., 198(1), 56, 2001
  7. Bao ZH, Ding WZ, Li Q, Int. J. Hydrog. Energy, 37(1), 951, 2012
  8. Natesakhawat S, Wang XQ, Zhang LZ, Ozkan US, J. Mol. Catal. A-Chem., 260(1-2), 82, 2006
  9. Ratnasamy C, Wagner JP, Catal. Rev.-Sci. Eng., 51(3), 325, 2009
  10. Meshkani F, Rezaei M, Korean J. Chem. Eng., 32(7), 1278, 2015
  11. Gonzalez JC, Gonzalez MG, Laborde MA, Moreno N, Appl. Catal., 20, 3, 1986
  12. Kim YT, Park ED, Korean J. Chem. Eng., 27(4), 1123, 2010
  13. Idakiev V, Mihajlova AD, Kunev B, Andreev A, React. Kinet. Catal. Lett., 33, 119, 1987
  14. Rhodes C, Williams BP, King F, Hutchings GJ, Catal. Commun., 3, 381, 2002
  15. Rhodes C, Hutchings GJ, Phys. Chem. Chem. Phys., 5, 2719, 2003
  16. Martos C, Dufour J, Ruiz A, Int. J. Hydrog. Energy, 34(10), 4475, 2009
  17. Marono M, Ruiz E, Sanchez JM, Martos C, Dufour J, Ruiz A, Int. J. Hydrog. Energy, 34(21), 8921, 2009
  18. Reddy GK, Gunasekera K, Boolchand P, Dong J, Smirniotis PG, J. Phys. Chem. C, 115, 7586, 2011
  19. Meshkani F, Rezaei M, Chem. Eng. J., 260, 107, 2015
  20. Lee JY, Lee DW, Lee KY, Wang Y, Catal. Today, 146, 260, 2009
  21. Dufour J, Martos C, Ruiz A, Ayuela FJ, Int. J. Hydrog. Energy, 18, 7647, 2013
  22. Salehirad A, Latifi SM, Miroliaee A, Mater. Res. Bull., 59, 104, 2014