Issue
Korean Journal of Chemical Engineering,
Vol.33, No.2, 465-472, 2016
Catalytic application of metallic iron from the dyeing sludge ash for benzene steam reforming reaction in tar emitted from biomass gasification
Because it is the most promising method for reforming tar in a gasification system, a catalytic steam reforming reaction of tar using a dyeing sludge ash catalyst that contains mostly iron oxide has been modeled using benzene to investigate whether a steam reforming catalyst produced from waste is viable. The catalytic activity of the ash catalyst is similar to that of the commercially available iron-chrome-based catalyst for the same equivalent total amount of Fe2O3. The activity over the ash catalyst has been examined in terms of the weight hour space velocity (WHSV) and the reaction temperature to develop a model for the reaction kinetics. Using a power law model, the reaction order coefficients of the benzene and steam were estimated to be 0.43 and 0, respectively. The activation energy required for the ash catalyst was approximately 187.6 kJ mol.1. In addition, the reductive properties of the iron oxide in the ash catalyst were also examined via XRD and H2-TPR analyses.
[References]
  1. Devi L, Ptasinski KJ, Janssen FJJG, van Paasen SVB, Bergman PCA, Kiel JHA, Renew. Energy, 30(4), 565, 2005
  2. McKendry P, Bioresour. Technol., 83(1), 55, 2002
  3. Schneider UWEA, McCarl BA, Environ. Res. Econ., 24, 291, 2003
  4. Han J, Kim H, Renew. Sust. Energ. Rev., 12, 397, 2008
  5. Noichi H, Uddin A, Sasaoka E, Fuel Process. Technol., 91(11), 1609, 2010
  6. Coll R, Salvado J, Farriol X, Montane D, Fuel Process. Technol., 74(1), 19, 2001
  7. Xu L, Liu J, Wang Q, Liu S, Xin W, Xu Y, Appl. Catal., 258, 47, 2004
  8. Nagao M, Suda Y, Langmuir, 5, 42, 1989
  9. Milne TA, Evans RJ, Abatzoglou N, Technical Report; NREL:USA, NREL/TP-570-25357, November (1998).
  10. Swierczynski D, Libs S, Courson C, Kiennemann A, Appl. Catal. B: Environ., 74(3-4), 211, 2007
  11. Zhang RQ, Wang YC, Brown RC, Energy Conv. Manag., 48(1), 68, 2007
  12. Polychronopoulou K, Bakandritsos A, Tzitzios V, Fierro JLG, Efstathiou AM, J. Catal., 241(1), 132, 2006
  13. Edwards MA, Whittle DM, Rhodes C, Ward AM, Rohan D, Shannon MD, Hutchings GJ, Kiely CJ, Phys. Chem. Chem. Phys., 4, 3902, 2002
  14. Kumar P, Idem R, Energy Fuels, 21(2), 522, 2007
  15. Uddin MA, Tsuda H, Wu SJ, Sasaoka E, Fuel, 87(4-5), 451, 2008
  16. Ross D, Noda R, Horio M, Kosminski A, Ashman P, Mullinger P, Fuel, 86(10-11), 1417, 2007
  17. Nordgreen T, Liliedahl T, Sjostrom K, Fuel, 85(5-6), 689, 2006
  18. Tomishige K, Miyazawa T, Asadullah M, Ito S, Kunimori K, Green Chem., 5, 399, 2003
  19. Tomishige K, Asadullah M, Kunimori K, Catal. Today, 89(4), 389, 2004
  20. Sutton D, Kelleher B, Ross JRH, Fuel Process. Technol., 13, 155, 2001
  21. Park YS, Ph.D. Dissertation, Tokyo Institute of Technology, Tokyo, Japan (2012).
  22. Gao NB, Li AM, Quan C, Gao F, Int. J. Hydrog. Energy, 33(20), 5430, 2008
  23. Ma L, Gong B, Tran T, Wainwright MS, Catal. Today, 63(2-4), 499, 2000
  24. Pant KK, Jain R, Jain S, Korean J. Chem. Eng., 28(9), 1859, 2011
  25. Kuchonthara P, Puttasawat B, Piumsomboon P, Mekasut L, Vitidsant T, Korean J. Chem. Eng., 29(11), 1525, 2012
  26. Talawar MB, Jyothi TM, Sawant PD, Raja T, Raw BS, Green Chem., 2, 266, 2000
  27. Garcia XA, Huttinger KJ, Erdol Kohle Erdgas Petrochem., 43, 273, 1990
  28. Bartholomew CH, Appl. Catal. A: Gen., 212, 17, 2001
  29. Baker EG, Mudge LK, Brown MD, Ind. Eng. Chem. Res., 26, 1335, 1987
  30. Lee GH, Park JG, Sung YM, Chung KY, Cho WI, Kim DW, Nanotechnology, 20, 295205, 2009
  31. Munteanu G, Ilieva L, Andreeva D, Thermochim. Acta, 291(1-2), 171, 1997
  32. Polychronopoulou K, Bakandritsos A, Tzitzios V, Fierro JLG, Efstathiou AM, J. Catal., 241(1), 132, 2006