Issue
Korean Journal of Chemical Engineering,
Vol.33, No.2, 456-464, 2016
Graphene-ZnO nanocomposite for highly efficient photocatalytic degradation of methyl orange dye under solar light irradiation
A facile synthesis of graphene oxide-zinc oxide nanocomposite (GO-ZnO) was performed by using wet chemical method of graphene oxide and zinc acetate precursors. The nanocomposite was characterized and intercalated with Raman spectroscopy, FE-SEM, TEM, SAED and EDAX. The crystalline nature was studied from P-XRD, and surface area of the sample was analyzed by BET. The chemical composition was explained in the light of XPS phenomenon. The photo electron-excitation (PL) studies were conducted for understanding the photocatalytic mechanism, and photocatalytic degradation of methyl orange was studied by using UV-VIS spectrophotometer. We investigated the photocatalytic activity involving GO-ZnO nanocomposite besides checking the re-stability of the composite. Significant high-performance photocatalytic activity of GO-ZnO nanocomposite was exhibited on methyl orange degradation under solar light.
[References]
  1. Soylak M, Erdogan ND, J. Hazard. Mater., 137(2), 1035, 2006
  2. Uluozlu OD, Tuzen M, Mendil D, Soylak M, J. Hazard. Mater., 176(1-3), 1032, 2010
  3. Qin JQ, Zhang XY, Xue YN, Kittiwattanothai N, Kongsittikul P, Rodthongkum N, Limpanart S, Ma MZ, Liu RP, Appl. Surf. Sci., 321, 226, 2014
  4. Seredych M, Mabayoje O, Bandosz TJ, J. Phys. Chem. C, 116, 2527, 2012
  5. Seredych M, Mabayoje O, Kolesnnik MM, Krstic V, Bandosz TJ, J. Mater. Chem., 22, 7970, 2012
  6. Tatsuma T, Saitoh S, Ngaotrakanwiwat P, Ohko Y, Fujishima A, Langmuir, 18(21), 7777, 2002
  7. Woan K, Pyrgiotakis G, Sigmund W, Adv. Mater., 21(21), 2233, 2009
  8. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA, Nature, 438, 197, 2005
  9. Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S, Nature, 446, 60, 2007
  10. Katsnelson MI, Novoselov KS, Solid State Commun., 143, 3, 2007
  11. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS, Nat. Mater., 6(9), 652, 2007
  12. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA, Science, 306, 666, 2004
  13. Srinivas G, Burress JW, Ford J, Yildirim T, J. Mater. Chem., 21, 1323, 2011
  14. Seredych M, Mabayoje O, Bandosz TJ, Langmuir, 28(2), 1337, 2012
  15. Seredych M, Mabayoje O, Bandosz TJ, J. Phys. Chem. C, 116, 2527, 2012
  16. Allen MJ, Tung VC, Kaner RB, Chem. Rev., 110(1), 132, 2010
  17. Yang ST, Chang Y, Wang H, Liu G, Chen S, Wang Y, Liu Y, Cao A, J. Colloid Interface Sci., 357, 122, 2010
  18. Chandra V, Park J, Chun Y, Lee JW, Hwang IC, Kim KS, ACS Nano, 4, 3979, 2010
  19. Chandra V, Kim KS, Chem. Commun., 47, 3942, 2011
  20. Petit C, Seredych M, Bandosz TJ, J. Mater. Chem., 19, 9176, 2009
  21. Seredych M, Bandosz TJ, Chem. Eng. J., 166(3), 1032, 2011
  22. Seredych M, Bandosz TJ, J. Phys. Chem. C, 114, 14552, 2010
  23. Bashkova S, Bandosz TJ, J. Ind. Eng. Chem. Res., 48, 10884, 2009
  24. Seredych M, Mabayoje O, Bandosz TJ, Langmuir, 28(2), 1337, 2012
  25. Matsuo Y, Nishino Y, Fukutsuka T, Sugie Y, Carbon, 46, 1162, 2008
  26. Morishige K, Hamada T, Langmuir, 21(14), 6277, 2005
  27. Zhao YX, Ding HL, Zhong Q, Appl. Surf. Sci., 258(10), 4301, 2012
  28. Levasseur B, Petit C, Bandosz TJ, ACS Appl. Mater. Interfaces, 2, 3606, 2010
  29. Petit C, Bandosz TJ, Adv. Funct. Mater., 20(1), 111, 2010
  30. Zan X, Fang Z, Wu J, Xiao F, Huo F, Duan H, Biosens. Bioelectron., 49, 71, 2013
  31. Zhang LL, Zhao X, Stoller MD, Zhu Y, Ji H, Murali S, Wu Y, Perales S, Clevenger B, Ruoff RS, Nano Lett., 12, 1806, 2012
  32. Zhu M, Chen P, Liu M, ACS Nano, 5, 4529, 2011
  33. Bu Y, Chen Z, Li W, Hou B, ACS Appl. Mater. Interfaces, 5, 12361, 2013
  34. Wang YW, Cao A, Jiang Y, Zhang X, Liu JH, Liu Y, Wang H, ACS Appl. Mater. Interfaces, 6, 2791, 2014
  35. Ameen S, Akhtar M, Song M, Shin HS, ACS Appl. Mater Interfaces, 4, 4405, 2012
  36. Li JY, Li H, Nanoscale Research Lett., 4, 165, 2009
  37. Lee J, Nam SC, Tak Y, Korean J. Chem. Eng., 22(1), 161, 2005
  38. Peng F, Zhu H, Wang H, Yu H, Korean J. Chem. Eng., 24(6), 1022, 2007
  39. Hong E, Choi T, Kim JH, Korean J. Chem. Eng., 32(3), 424, 2015
  40. Chaudhari SP, Bodade AB, Chaudhari GN, Korean J. Chem. Eng., 30(11), 2001, 2013
  41. Hirakawa T, Kamat PV, J. Am. Chem. Soc., 127(11), 3928, 2005
  42. Subramanian V, Wolf EE, Kamat PV, J. Am. Chem. Soc., 126(15), 4943, 2004
  43. Zhang C, Zhang J, Su Y, Xu M, Yang Z, Zhang Y, Physica E, 56, 251, 2014
  44. Li BX, Liu TX, Wang YF, Wang ZF, J. Colloid Interface Sci., 377, 114, 2012
  45. Kim SR, Parvez MK, Chhowalla M, Chem. Phys. Lett., 483(1-3), 124, 2009
  46. Zhou X, Shi TJ, Zhou HO, Appl. Surf. Sci., 258(17), 6204, 2012
  47. Hummers WS, Offeman RE, J. Am. Chem. Soc., 80, 1339, 1958
  48. Bu Y, Chen Z, Li W, Hou B, ACS Appl. Mater. Interfaces, 5, 12361, 2013
  49. Ye XY, Zhou YM, Sun YQ, Chen J, Wang ZQ, J. Nanopart. Res., 11, 1159, 2009
  50. Guo J, Ren LL, Wang RY, Zhang C, Yang Y, Liu TX, Composites. Part B, 42, 2130, 2011
  51. Kudin KN, Ozbas B, Schniepp HC, Prudhomme RK, Aksay IA, Car R, Nano Lett., 8, 36, 2008
  52. Adhikari B, Biswas A, Banerjee A, Langmuir, 28(2), 1460, 2012
  53. Wang F, Zhang K, J. Mol. Catal. A-Chem., 345(1-2), 101, 2011
  54. Gao EP, Wang WZ, Shang M, Xu JH, Phys. Chem. Chem. Phys., 13, 2887, 2011
  55. Ahmad M, Ahmed E, Hong ZL, Xu JF, Khalid NR, Elhissi A, Ahmed W, Appl. Surf. Sci., 274, 273, 2013
  56. Luan VH, Tien HN, Hur SH, J. Colloid Interface Sci., 437, 181, 2015
  57. Ahmad M, Ahmed E, Hong ZL, Khalid NR, Ahmed W, Elhissi A, J. Alloy. Compd., 577, 717, 2013