Issue
Korean Journal of Chemical Engineering,
Vol.33, No.2, 438-447, 2016
Dynamic modeling of fixed-bed adsorption of flue gas using a variable mass transfer model
This study introduces a dynamic mass transfer model for the fixed-bed adsorption of a flue gas. The derivation of the variable mass transfer coefficient is based on pore diffusion theory and it is a function of effective porosity, temperature, and pressure as well as the adsorbate composition. Adsorption experiments were done at four different pressures (1.8, 5, 10 and 20 bars) and three different temperatures (30, 50 and 70 oC) with zeolite 13X as the adsorbent. To explain the equilibrium adsorption capacity, the Langmuir-Freundlich isotherm model was adopted, and the parameters of the isotherm equation were fitted to the experimental data for a wide range of pressures and temperatures. Then, dynamic simulations were performed using the system equations for material and energy balance with the equilibrium adsorption isotherm data. The optimal mass transfer and heat transfer coefficients were determined after iterative calculations. As a result, the dynamic variable mass transfer model can estimate the adsorption rate for a wide range of concentrations and precisely simulate the fixed-bed adsorption process of a flue gas mixture of carbon dioxide and nitrogen.
[References]
  1. Park S, Park T, J. KSME, 47(7), 11, 2007
  2. Folger P, Carbon Capture: A Technology Assessment, CRS Report for Congress (2010).
  3. Yu CH, Huang CH, Tan CS, Aerosol and Air Quality Research, 12, 745, 2012
  4. Kim K, Yang S, Lee JB, Eom TH, Ryu CK, Lee HJ, Bae TS, Lee YB, Lee SJ, Korean J. Chem. Eng., 32(4), 677, 2015
  5. Linga P, Adevemo A, Englezos P, Environ. Sci. Technol., 42, 315, 2008
  6. Zhang JS, Yedlapalli P, Lee JW, Chem. Eng. Sci., 64(22), 4732, 2009
  7. Chapel DG, Mariz CL, Ernest J, Canadian Society of Chemical Engineers Annual Meeting, October 4-6 (1999).
  8. Kikkinides ES, Yang RT, Cho SH, Ind. Eng. Chem. Res., 32, 2714, 1993
  9. Chue KT, Kim JN, Yoo YJ, Cho SH, Yang RT, Ind. Eng. Chem. Res., 34(2), 591, 1995
  10. Na BK, Koo KK, Eum HM, Lee H, Song HK, Korean J. Chem. Eng., 18(2), 220, 2001
  11. Choi WK, Kwon TI, Yeo YK, Lee H, Song HK, Na BK, Korean J. Chem. Eng., 20(4), 617, 2003
  12. Cavenati S, Grande CA, Rodrigues AE, Chem. Eng. Sci., 61(12), 3893, 2006
  13. Chou CT, Chen CY, Sep. Purif. Technol., 39(1-2), 51, 2004
  14. Gomes VG, Yee KWK, Sep. Purif. Technol., 28(2), 161, 2002
  15. Ko D, Siriwardane R, Biegler LT, Ind. Eng. Chem. Res., 42(2), 339, 2003
  16. Zhang ZJ, Zhang W, Chen X, Xia QB, Li Z, Sep. Sci. Technol., 45(5), 710, 2010
  17. Siriwardane RV, Shen MS, Fisher EP, Poston JA, Energy Fuels, 15(2), 279, 2001
  18. Cavenati S, Grande CA, Rodrigues AE, J. Chem. Eng. Data, 49(4), 1095, 2004
  19. Casas N, Schell J, Pini R, Mazzotti M, Adsorption, 18, 143, 2012
  20. Kim JN, Chue KT, Kim KI, Cho SH, Kim JD, J. Chem. Eng. Jpn., 27(1), 45, 1994
  21. Farooq S, Ruthven DM, Ind. Eng. Chem. Res., 29, 1084, 1990
  22. Dantas TLP, Luna FMT, Silva IJ, Torres ABB, de Azevedo DCS, Rodrigues AE, Moreira RFPM, Br. J. Chem. Eng., 28(3), 533, 2011
  23. Dantas TLP, Luna FMT, Silva IJ, de Azevedo DCS, Grande CA, Rodrigues AE, Moreira RFPM, Chem. Eng. J., 169(1-3), 11, 2011
  24. Ergun S, Chem. Eng. Prog., 48, 89, 1952
  25. Bird RB, Stewart WE, Lightfoot EN, Transport Phenomena, Wiley, New York (1960).
  26. Langmuir I, J. Am. Chem. Soc., 38, 2221, 1916
  27. Freundlich HMF, J. Phys. Chem., 57A, 385, 1906
  28. Sips R, J. Chem. Phys., 16(5), 490, 1948
  29. Sips R, J. Chem. Phys., 18(8), 1024, 1950
  30. Tien C, Adsorption Calculations and Modeling, Butterworth-Heinemann (1994).
  31. Barrande M, Bouchet R, Denoyel R, Anal. Chem., 79, 9115, 2007
  32. Wankat PC, Rate-controlled Separations, Elsevier (1990).
  33. Yagi S, Kunni D, AIChE J., 6, 97, 1960
  34. Kunii D, Levenspiel O, Fluidization Engineering 2nd, Butterworth-Heinemann (1991).
  35. Kunni D, Smith JM, AIChE J., 6, 71, 1960
  36. Bennett CO, Myers JE, Momentum, Heat and Mass Transfer 3rd, McGraw-Hill (1982).