Issue
Korean Journal of Chemical Engineering,
Vol.33, No.2, 423-437, 2016
Simultaneous multi-objective optimization of a new promoted ethylene dimerization catalyst using grey relational analysis and entropy measurement
A hybrid approach between the Taguchi method and grey relational analysis (GRA) with entropy measurement was applied to determine a single optimum setting for reaction factors of the proposed ethylene dimerization catalyst having overall selectivity to 1-butene (S1-btn (%)) and turnover frequency (TOF (h.1)) as multiple quality characteristics. Titanium tetrabutoxide (Ti(OC4H9)4) catalyst precursor in combination with triethyl aluminum (TEA) activator, 1,4-dioxane as a suitable modifier, and ethylene dichloride (EDC) as a novel promoter were used in the catalysis. Control factors of temperature, pressure, Al/Ti, 1,4-dioxane/Ti, and EDC/Ti mol ratios were investigated on three levels and their main effects were discussed. The effect of the binary interaction between temperature, pressure, and Al/Ti mol ratio was also examined. Weight of the responses was determined using entropy. Analysis of variance (ANOVA) for data obtained from GRA indicated that EDC/Ti mol ratio with 27.64% contribution had the most profound effect on the multiple quality characteristics. Development of the weighted Grey-Taguchi method used the Taguchi method as its basic structure, adopted GRA to deal with multiple responses, and entropy to enhance the reasonability of the comprehensive index produced by GRA to make the results more objective and accurate. Overall, these combined mathematical techniques improved catalytic performance for 1-butene production.
[References]
  1. Lappin GR, Sauer JD, Alpha-olefins applications handbook, Marcel Dekker, Berkeley, CA (1989).
  2. Breuil PAR, Magna L, Olivier-Bourbigou H, Catal. Lett., 145(1), 173, 2015
  3. Yang Y, Liu Z, Liu B, Duchateau R, ACS Catal., 3, 2353, 2013
  4. Wright WRH, Batsanov AS, Messinis AM, Howard JAK,Tooze RP, Hanton MJ, Dyer PW, J. Chem. Soc.-Dalton Trans., 41, 5502, 2012
  5. Forestiere A, Olivier-Bourbigou H, Saussine L, Oil Gas Sci. Technol. -Rev. IFP, 64, 649, 2009
  6. Mahdaviani SH, Parvari M, Soudbar D, Chem. Eng. Commun., 202, 1564, 2015
  7. Mahdaviani SH, Soudbar D, Parvari M, in IAENG transactions on engineering technologies, Kim HK, Ao SI, Rieger BB, Eds., Springer, Dordrecht (2013).
  8. Grasset F, Cazaux JB, Magna L, Braunstein P, Olivier-Bourbigou H, J. Chem. Soc.-Dalton Trans., 41, 10396, 2012
  9. Grasset F, Magna L, US Patent, 2011/0288308 A1 (2011).
  10. Mahdaviani SH, Soudbar D, Parvari M, Int. J. Chem. Eng. Appl., 1, 276, 2010
  11. Cazaux JB, Braunstein P, Magna L, Saussine L, Olivier-Bourbigou H, Eur. J. Inorg. Chem., 2009, 2942, 2009
  12. Ajellal N, Khan MCA, Boff ADG, Horner M, Thomas CM, Carpentier JF, Casagrande OL, Organometallics, 25, 1213, 2006
  13. Speiser F, Braunstein P, Saussine L, Acc. Chem. Res., 38, 784, 2005
  14. de Souza RF, Bernardo-Gusmao K, Cunha GA, Loup C, Leca F, Reau R, J. Catal., 226(1), 235, 2004
  15. Al-Sadoun AW, Appl. Catal. A: Gen., 105, 1, 1993
  16. Al-Jaralleh AM, Anabtawi JA, Siddiqui MAB, Aitani AM, Al-Sadoun AW, Catal. Today, 14, 1, 1992
  17. Pillai SM, Tembe GL, Ravindranathan M, Sivaram S, Ind. Eng. Chem. Res., 27, 1971, 1988
  18. Belov GP, Dyachkovskii FS, Smirnov VI, Pet. Chem. U.S.S.R., 18, 223, 1979
  19. Bre A, Chauvin Y, Commereuc D, Nouv. J. Chim., 10, 535, 1986
  20. Belov GP, Dzhabiev TS, Kolesnikov IM, J. Mol. Catal., 14, 105, 1982
  21. Suttil JA, McGuinness DS, Organometallics, 31, 7004, 2012
  22. Robinson R, McGuinness DS, Yates BF, ACS Catal., 3, 3006, 2013
  23. Tang SY, Liu Z, Yan XW, Li N, Cheng RH, He XL, Liu BP, Appl. Catal. A: Gen., 481, 39, 2014
  24. Chen HX, Liu XY, Hu WB, Ning YN, Jiang T, J. Mol. Catal. A-Chem., 270(1-2), 273, 2007
  25. Yang Y, Kim H, Lee J, Paik H, Jang HG, Appl. Catal. A: Gen., 193(1-2), 29, 2000
  26. Davies OL, Goldsmith PL, Statistical methods in research and production with special reference to the chemistry industry, Published for Imperial Chemical Industries Ltd., 4th Rev. Ed., Oliver and Boyd, Edinburgh (1972).
  27. Mason RL, Gunst RF, Hess JL, Statistical design and analysis of experiments: With applications to engineering and science, 2nd Ed., Wiley, New York (2003).
  28. Taguchi G, System of experimental design: Engineering methods to optimize quality and minimize costs, UNIPUB/Kraus International Publications, New York (1987).
  29. Ross PJ, Taguchi techniques for quality engineering, 2nd Ed., McGraw-Hill, New York (1996).
  30. Deng JL, J. Grey Syst., 1, 1, 1989
  31. Wen KL, Chang TC, You XL, in Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, San Diego, CA, 2, 1842 (1998).
  32. Phadke MS, Quality engineering using robust design, AT&T Bell Laboratories Report, Prentice-Hall International Editions, New Jersey (1989).
  33. Roy RK, Design of experiments using the Taguchi approach: 16 steps to product and process improvement, John Wiley & Sons, Inc., New York (2001).
  34. Kucuk O, Korean J. Chem. Eng., 23(1), 21, 2006
  35. Lu M, Wevers K, J. Grey Syst., 10, 47, 2007
  36. Liu S, Lin Y, Grey information: Theory and practical applications (Advanced information and knowledge processing), Springer-Verlag, New York (2005).
  37. Yan J, Li L, J. Clean Prod., 52, 462, 2013
  38. Kuram E, Ozcelik B, Measurement, 46, 1849, 2013
  39. Padhee S, Pani S, Mahapatra SS, J. Manuf. Eng., 226, 176, 2012
  40. Siriyala R, Alluru GK, Penmetsa RMR, Duraiselvam M, Front. Mech. Eng., 7, 279, 2012
  41. Mondal S, Paul CP, Kukreja LM, Bandyopadhyay A, Pal PK, Int. J. Adv. Manuf. Technol., 54, 957, 2011
  42. Acherjee B, Kuar AS, Mitra S, Misra D, Int. J. Adv. Manuf. Technol., 56, 995, 2011
  43. Jung JH, Kwon WT, J. Mech. Sci. Technol., 24, 1083, 2010
  44. Chen CC, Tsao CC, Lin YC, Hsu CY, Ceram. Int., 36, 979, 2010
  45. Tzeng CJ, Lin YH, Yung YK, Jeng MC, J. Mater. Process. Technol., 209, 2753, 2009
  46. Caydas U, Hascalik A, Opt. Laser Technol., 40, 987, 2008
  47. Pan LK, Wang CC, Wei SL, Sher HF, J. Mater. Process. Technol., 182, 107, 2007
  48. Kuo CFJ, Su TL, Tsai CP, Fiber Polym., 8, 654, 2007
  49. Singh PN, Raghukandan K, Pai BC, J. Mater. Process. Technol., 155-156, 1558, 2004
  50. Fung CP, Huang CH, Doong JL, J. Reinf. Plast. Compos., 22, 51, 2003
  51. Kao PS, Hocheng H, J. Mater. Process. Technol., 140, 255, 2003
  52. Tarng YS, Juang SC, Chang CH, J. Mater. Process. Technol., 128, 1, 2002
  53. Lin JL, Lin CL, Int. J. Mach. Tools Manuf., 42, 237, 2002
  54. Sharma A, Yadava V, Opt. Laser Technol., 44, 159, 2012
  55. Jangra K, Grover S, Aggarwal A, Front. Mech. Eng., 7, 288, 2012
  56. Kuo CFJ, Su TL, Jhang PR, Huang CY, Chiu CH, Energy, 36(5), 3554, 2011
  57. Sharma A, Yadava V, Mater. Manuf. Process., 26, 1522, 2011
  58. Singh GK, Yadava V, Kumar R, Int. J. Precis. Eng. Manuf., 11, 509, 2010
  59. Chiang YM, Hsieh HH, Comput. Ind. Eng., 56, 648, 2009
  60. Rao R, Yadava V, Opt. Laser Technol., 41, 922, 2009
  61. Lindman HR, Analysis of variance in experimental design, Springer-Verlag, Berlin (1992).
  62. Chou CS, Ho CY, Huang CI, Adv. Powder Technol., 20(1), 55, 2009
  63. Chou CS, Liu CL, Chaung WC, Mater. Des., 44, 172, 2013
  64. Ramavandi B, Asgari G, Faradmal J, Sahebi S, Roshani B, Korean J. Chem. Eng., 31(12), 2207, 2014
  65. Sahin Y, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 408, 1, 2005
  66. Bardinet GMP, Keck REJ, US Patent, 3,752,834 (1973).
  67. Herman DF, US Patent, 2,654,770 (1953).
  68. Pandey AK, Dubey AK, Opt. Laser Eng., 50, 328, 2012
  69. Srivastava VC, Mall ID, Mishra IM, Ind. Eng. Chem. Res., 46(17), 5697, 2007
  70. Fisher RA, Statistical methods for research workers, Oliver and Boyd, London (1925).