Issue
Korean Journal of Chemical Engineering,
Vol.33, No.1, 330-336, 2016
Morphology, thermal, mechanical, and barrier properties of graphene oxide/poly(lactic acid) nanocomposite films
To improve the physical and gas barrier properties of biodegradable poly(lactic acid) (PLA) film, two graphene nanosheets of highly functionalized graphene oxide (0.3 wt% to 0.7 wt%) and low-functionalized graphene oxide (0.5 wt%) were incorporated into PLA resin via solution blending method. Subsequently, we investigated the effects of material parameters such as loading level and degree of functionalization for the graphene nanosheets on the morphology and properties of the resultant nanocomposites. The highly functionalized graphene oxide (GO) caused more exfoliation and homogeneous dispersion in PLA matrix as well as more sustainable suspensions in THF, compared to low-functionalized graphene oxide (LFGO). When loaded with GO from 0.3 wt% to 0.7 wt%, the glass transition temperature, degree of crystallinity, tensile strength and modulus increased steadily. The GO gave rise to more pronounced effect in the thermal and mechanical reinforcement, relative to LFGO. In addition, the preparation of fairly transparent PLA-based nanocomposite film with noticeably improved barrier performance achieved only when incorporated with GO up to 0.7wt%. As a result, GO may be more compatible with hydrophilic PLA resin, compared to LFGO, resulting in more prominent enhancement of nanocomposites properties.
[References]
  1. Yang KK, Wang XL, Wang YZ, J. Ind. Eng. Chem., 13(4), 485, 2007
  2. Lilichenko N, Maksimov RD, Zicans J, Meri RM, Plume E, Mech. Compos. Mater., 44, 45, 2008
  3. Amass W, Amass A, Tighe B, Polym. Int., 47, 89, 1998
  4. Nam JY, Ray SS, Okamoto M, Macromolecules, 36(19), 7126, 2003
  5. Lin LH, Liu HJ, Yu NK, J. Appl. Polym. Sci., 106(1), 260, 2007
  6. Singh S, Ray SS, J. Nanosci. Nanotechnol., 7, 2596, 2007
  7. Chang J, An YU, Sur GS, J. Polym. Sci. B: Polym. Phys., 41, 94, 2002
  8. Krikorian V, Pochan DJ, Chem. Mater., 15, 4317, 2003
  9. Bang G, Kim SW, J. Ind. Eng. Chem., 18(3), 1063, 2012
  10. Iotti M, Fabbri P, Messori M, Pilati F, Fava P, J. Polym. Environ., 17, 10, 2009
  11. Kim H, Abdala AA, Macosko CW, Macromolecules, 43(16), 6515, 2010
  12. Zhao YF, Xiao M, Wang SJ, Ge XC, Meng YZ, Compos. Sci. Technol., 67, 2528, 2007
  13. Lee Y, Kim D, Seo J, Han H, Khan SB, Polym. Int., 9, 1386, 2013
  14. Huang HD, Ren PG, Chen J, Zhang WQ, Ji X, Li ZM, J. Membr. Sci., 409, 156, 2012
  15. Wang J, Xu C, Hu H, Wan L, Chen R, Zheng H, Liu F, Zhang M, Shang X, Wang X, J. Nanopart. Res., 13, 869, 2011
  16. Tseng IH, Liao YF, Chiang JC, Tsai MH, Mater. Chem. Phys., 136(1), 247, 2012
  17. Kim H, Miura Y, Mascosko CW, Chem. Mater., 22, 3441, 2010
  18. Yang J, Bai L, Feng G, Yang XY, Lv MJ, Zhang CA, Hu H, Wang XB, Ind. Eng. Chem. Res., 52(47), 16745, 2013
  19. Pinto AM, Cabral J, Tanaka DAP, Mendes AM, Magalhaes FD, Polym. Int., 62, 33, 2013
  20. Wang HS, Qiu ZB, Thermochim. Acta, 527, 40, 2012
  21. Wang HS, Qiu ZB, Thermochim. Acta, 526(1-2), 229, 2011
  22. Xu JZ, Chen T, Yang CL, Li ZM, Mao YM, Zeng BQ, Hsiao BS, Macromolecules, 43(11), 5000, 2010
  23. Hummers WS, Offman RE, J. Am. Chem. Soc., 80, 1339, 1958
  24. Kim SW, Choi HM, High Perform. Polym., In Press DOI:10.1177/ 0954008314557051.
  25. Zhao X, Zhang QH, Chen DJ, Lu P, Macromolecules, 43(5), 2357, 2010
  26. Pei S, Cheng HM, Carbon, 50, 3210, 2012
  27. Zhou D, Cheng QY, Han BH, Carbon, 49, 3920, 2011
  28. Chow WS, Lok SK, J. Therm. Anal. Calorim., 95, 627, 2009
  29. Kim SW, Korean J. Chem. Eng., 28(1), 298, 2011
  30. Chan CK, Chu IM, Polymer, 42(14), 6089, 2001
  31. Finnigan B, Martin D, Halley P, Truss R, Campbell K, Polymer, 45(7), 2249, 2004
  32. Shi X, Gan Z, Eur. Polym. J., 43, 4852, 2007
  33. Wang D, Yu J, Zhang J, He J, Zhang J, Compos. Sci. Technol., 85, 83, 2013
  34. Bian J, Lin HL, He FX, Wang L, Wei XW, Chang I, Sancaktar E, Eur. Polym. J., 49, 1406, 2013
  35. Kim SW, Cha SH, J. Appl. Polym. Sci., 131, 40289, 2014