Issue
Korean Journal of Chemical Engineering,
Vol.33, No.1, 305-311, 2016
A simple synthesis of Ag2+xSe nanoparticles and their thin films for electronic device applications
A simple method to synthesize silver selenide nanoparticles has been proposed. By changing the ratio of Se-oleylamine complex and silver acetate in the reacting mixture at different temperatures, both size and stoichiometry of the silver selenide particles could be successfully controlled. The size of the nanoparticles was adjusted by changing reaction temperatures. The synthesized silver selenide nanoparticles showed size changes from 3 to 10 nm when the corresponding reaction temperatures were 40-100 oC, respectively. In addition to the size change, the stoichiometry of the synthesized nanoparticles (Ag2+xSe) could be adjusted by simply varying the ratio of Ag to Se precursors. Through XPS analyses the x value in Ag2+xSe was determined, and it changed between 0.54 and .0.03 by varying Ag/Se ratio from 2/0.75 to 2/4. The optical property of the nonstoichiometric Ag2+xSe nanoparticles was different from that of stoichiometric Ag2Se nanoparticles, but showed the plasmon absorption of Ag-Ag network. The plasmon absorption was decreased with the increased concentration of the Se precursor. Finally, the Ag2+xSe thin film in this work showed large magnetoresistance and successfully applied to prepare high-performance Schottky diode. The Ag2.06Se film exhibited the magnetoresistance effect up to 0.9% at only 0.8 T at room temperature. The voltage drop and breakdown voltage of the Schottky diode were 0.5 V and 9.3 V, respectively.
[References]
  1. Ge JP, Xu S, Liu LP, Li YD, Chem.-Eur. J., 12, 3672, 2006
  2. Ng CHB, Tan H, Fan WY, Langmuir, 22(23), 9712, 2006
  3. Batabyal SK, Basu C, Das AR, Sanyal GS, Cryst. Growth Des., 4, 509, 2004
  4. Ng MT, Boothroyd C, Vittal JJ, Chem. Commun., 30, 3820, 2005
  5. Li D, Zheng Z, Shui Z, Long M, Yu J, Wong KW, Yang L, Zhang L, Lau WM, J. Phys. Chem. C, 112, 2845, 2008
  6. Anthony SP, Mater. Lett., 63, 773, 2009
  7. Zhang SY, Fang CX, Wei W, Jin BK, Tian YP, Shen YH, Yang JX, Gao HW, J. Phys. Chem. C, 111, 4168, 2007
  8. Gates B, Mayers B, Wu YY, Sun YG, Cattle B, Yang PD, Xia YN, Adv. Funct. Mater., 12(10), 679, 2002
  9. Wang HL, Qi LM, Adv. Funct. Mater., 18(8), 1249, 2008
  10. Su HL, Xie Y, Li B, Qian YT, Mater. Res. Bull., 35(3), 465, 2000
  11. Glanville YJ, Narehood DG, Sokol PE, Amma A, Mallouk T, J. Mater. Chem., 12, 2433, 2002
  12. Yan YI, Qian XF, Xu HJ, Yin J, Zhu ZK, Inorg. Chem. Commun., 6, 34, 2003
  13. Wang WZ, Geng Y, Qian YT, Ji MR, Xie Y, Mater. Res. Bull., 34(6), 877, 1999
  14. Schoen DT, Xie C, Cui Y, J. Am. Chem. Soc., 129(14), 4116, 2007
  15. Buschmann V, Van Tendeloo G, Monnoyer P, Nagy JB, Langmuir, 14(7), 1528, 1998
  16. Sahu A, Khare A, Deng DD, Norris DJ, Chem. Commun., 48, 5458, 2012
  17. Panneerselvam A, Nguyen CQ, Malik MA, O’Brien P, Raftery J, J. Mater. Chem., 19, 419, 2009
  18. Jafari M, Salavati-Niasari M, Sobhani A, Micro Nano Lett., 8, 508, 2013
  19. Wang DS, Xie T, Peng Q, Li YD, J. Am. Chem. Soc., 130(12), 4016, 2008
  20. Son DH, Hughes SM, Yin Y, Alivisatos AP, Science, 306, 1009, 2004
  21. Gu YP, Cui R, Zhang ZL, Xie ZX, Pang DW, J. Am. Chem. Soc., 134(1), 79, 2012
  22. Dong B, Li C, Chen G, Zhang Y, Zhang Y, Deng M, Wang Q, Chem. Mater., 25, 503, 2013
  23. El-Sayed MA, Acc. Chem. Res., 37, 326, 2004
  24. Neeleshwar S, Chen CL, Tsai CB, Chen YY, Chen CC, Shyu SG, Seehra MS, Phys. Rev. B, 71, 201307, 2005
  25. Jasieniak J, Smith L, van Embden J, Mulvaney P, Califano M, J. Phys. Chem., 113, 19468, 2009
  26. Wang YW, Kim JS, Kim GH, Kim KS, Appl. Phys. Lett., 88, 143106, 2006
  27. Luther JM, Jain PK, Ewers T, Alivisatos AP, Nat. Mater., 10(5), 361, 2011
  28. Alvarez MM, Khoury JT, Schaaff TG, Shafigullin MN, Vezmar I, Whetten RL, J. Phys. Chem., 101, 3706, 1997
  29. Park S, Son MK, Kim SK, Jeong MS, Prabakar K, Kim HJ, Korean J. Chem. Eng., 30(11), 2088, 2013
  30. Kim HC, Yoon C, Song YG, Kim YJ, Lee K, Korean J. Chem. Eng., 32(3), 563, 2015
  31. Buffat P, Borel JP, Phys. Rev., A, 13, 2287, 1976
  32. Li YN, Wu YL, Ong BS, J. Am. Chem. Soc., 127(10), 3266, 2005
  33. Janek J, Mogwitz B, Beck G, Kreutzbruck M, Kienle L, Korte C, Prog. Solid State Chem., 32, 179, 2004
  34. Hiramatsu H, Osterloh FE, Chem. Mater., 16, 2509, 2004
  35. Sun SH, Zeng H, J. Am. Chem. Soc., 124(28), 8204, 2002
  36. Kumar S, Kanjilal D, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 248, 109, 2006
  37. Chen X, Mao SS, Chem. Rev., 107(7), 2891, 2007
  38. Bagaria HG, Ada ET, Shamsuzzoha M, Nikles DE, Johnson DT, Langmuir, 22(18), 7732, 2006
  39. Vo DQ, Kim EJ, Kim S, J. Colloid Interface Sci., 337(1), 75, 2009
  40. Zhang J, Tang Y, Weng L, Ouyang M, Nano Lett., 9, 4061, 2009
  41. Chen M, Feng YG, Wang X, Li TC, Zhang JY, Qian DJ, Langmuir, 23(10), 5296, 2007
  42. Kaufmann EN, Common concepts in materials characterization, Wiley, New York (2002).
  43. Morris-Cohen AJ, Frederick MT, Lilly GD, McArthur EA, Weiss EA, J. Phys Chem. Lett., 1, 1078, 2010
  44. Guzelian AA, Katari JE, Kadavanich AV, Banin U, Hamad K, Juban E, Alivisatos AP, Wolters RH, Arnold CC, Heath JR, J. Phys. Chem., 100(17), 7212, 1996
  45. Yang F, Xiong S, Xia Z, Liu F, Han C, Zhang D, Semicond. Sci. Technol., 27, 125017, 2012
  46. Jasieniak J, Mulvaney P, J. Am. Chem. Soc., 129(10), 2841, 2007
  47. Mogwitz B, Korte C, Janek J, Kreutzbruck MV, Kienle L, J. Appl. Phys., 101, 043510, 2007
  48. Kreutzbruck MV, Lembke G, Mogwitz B, Korte C, Janek J, J. Phys. Rev. B, 79, 035204, 2009
  49. Monoharan SS, Prasanna SJ, Kiwitz DE, Schneider CM, Phys. Rev. B, 63, 212405, 2001
  50. Brillson LJ, Contacts to semiconductors: fundamentals and technology, William Andrew Publishing, New York (1993).
  51. Simon R, Bourke RC, Lougher EH, Adv. Energy Convers., 3, 481, 2001
  52. Tang Y, Ouyang M, Nat. Mater., 6(10), 754, 2007
  53. Gil TH, Kim HS, Lee JW, Kim YS, Solid-State Electron., 50, 1510, 2001
  54. Reddy MB, Kumar AA, Janardhanam V, Reddy VR, Reddy PN, Curr. Appl. Phys., 9(5), 972, 2009