Issue
Korean Journal of Chemical Engineering,
Vol.33, No.1, 299-304, 2016
Improving the tensile strength of carbon nanotube yarn via one-step double [2+1] cycloadditions
The tensile strength of a CNT yarn was improved through simple one-step double [2+1] cycloaddition reactions that crosslinked the constituent CNTs using a polyethylene glycol (PEG)-diazide crosslinker. The FT-IR spectrum confirmed that the azide groups in the PEG-diazide were converted into aziridine rings, indicating that the cycloaddition reaction was successful. The generation of crosslinked CNTs was also supported by the observation of N1s peak in the XPS spectrum and the increased thermal stability of the material, as observed by TGA. The tensile strength of the CNT yarn was increased from 0.2GPa to 1.4GPa after the crosslinking reaction when twisted at 4000 twists/meter. The appropriate selection of the crosslinker may further optimize the CNT yarn crosslinking reaction. The simplicity of this one-step crosslinking reaction provides an economical approach to the mass production of high-strength CNT yarns.
[References]
  1. Lan Y, Wang Y, Ren ZF, Adv. Phys., 60, 553, 2011
  2. Yu M, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS, Science, 287, 637, 2000
  3. Park J, Lee KH, Korean J. Chem. Eng., 29(3), 277, 2012
  4. Vigolo B, Penicaud A, Coulon C, Sauder C, Pailler R, Journet C, Bernier P, Poulin P, Science, 290, 1331, 2000
  5. Jiang KL, Li QQ, Fan SS, Nature, 419, 801, 2002
  6. Li YL, Kinloch IA, Windle AH, Science, 304, 276, 2004
  7. Koziol K, Vilatela J, Moisala A, Motta M, Cunniff P, Sennett M, Windle A, Science, 318, 1892, 2007
  8. Lu WB, Zu M, Byun JH, Kim BS, Chou TW, Adv. Mater., 24(14), 1805, 2012
  9. Liu K, Sun Y, Zhou R, Zhu H, Wang J, Liu L, Fan S, Jiang K, Nanotechnology, 21, 045708, 2010
  10. Tran CD, Humphries W, Smith SM, Huynh C, Lucas S, Carbon, 47, 2662, 2009
  11. Liu K, Sun Y, Lin X, Zhou R, Wang J, Fan S, Jiang K, Acs Nano, 4, 5827, 2010
  12. Ryu S, Lee Y, Hwang JW, Hong S, Kim C, Park TG, Lee H, Hong SH, Adv. Mater., 23(17), 1971, 2011
  13. Zhang M, Atkinson KR, Baughman RH, Science, 306, 1358, 2004
  14. Dalton AB, Collins S, Munoz E, Razal JM, Ebron VH, Ferraris JP, Coleman JN, Kim BG, Baughman RH, Nature, 423, 703, 2003
  15. Ma W, Liu L, Zhang Z, Yang R, Liu G, Zhang T, An X, Yi X, Ren Y, Niu Z, Li J, Dong H, Zhou W, Ajayan PM, Xie S, Nano Lett., 9, 2855, 2009
  16. Zhang M, Atkinson KR, Baughman RH, Science, 306, 1358, 2004
  17. Min J, Cai JY, Sridhar M, Easton CD, Gengenbach TR, McDonnell J, Humphries W, Lucas S, Carbon, 52, 520, 2013
  18. Lee J, Oh E, Kim HJ, Cho S, Kim T, Lee S, Park J, Kim H, Lee KH, J. Mater. Sci., 48(20), 6897, 2013
  19. Holzinger M, Steinmetz J, Samaille D, Glerup M, Paillet M, Bernier P, Ley L, Graupner R, Carbon, 42, 941, 2004
  20. Banerjee S, Hemraj-Benny T, Wong SS, Adv. Mater., 17(1), 17, 2005
  21. Socrates G, Infrared and Raman Characteristic Group Frequencies: Tables and Charts, Wiley, Chichester, New York (2004).
  22. Leinonen H, Rintala J, Siitonen A, Lajunen M, Pettersson M, Carbon, 48, 2425, 2010