Issue
Korean Journal of Chemical Engineering,
Vol.33, No.1, 290-298, 2016
High surface area polyaniline nanofiber synthesized in compressed CO2 and its application to a hydrogen sensor
High surface area polyaniline (HSA PANI) nanofibers were synthesized through oxidative polymerization of aniline in compressed CO2 using cobalt chloride as an additive. SEM and TEM analyses showed that the HSA PANI nanofibers had a coarse surface of very thin nanofibers. The HSA PANI nanofibers had a fairly uniform diameter range of 70-90 nm with a length of 0.5-1 μm, and showed an electrical conductivity (EC) of 3.46 S/cm. TGA analysis revealed that the HSA PANI nanofibers had more doping substances than did ordinary PANI nanofibers. In the case of the HSA PANI nanofibers, direct measurement of the surface area using gas adsorption method showed high value of 68.4m2/g, which was nearly twice that of ordinary PANI nanofibers. The HSA PANI nanofibers were used to fabricate the hydrogen sensor, exhibiting a large increase in resistance upon exposure to hydrogen gas. The hydrogen sensor in this work showed excellent characteristics, such as high sensitivity and short response time. The limit of detection (LOD) and limit of quantification (LOQ) of the hydrogen sensor were very low to show 40 ppm and 133 ppm of hydrogen, respectively.
[References]
  1. Huang JX, Virji S, Weiller BH, Kaner RB, J. Am. Chem. Soc., 125(2), 314, 2003
  2. Arsat R, Yu XF, Li YX, Wlodarski W, Kalantar-Zadeh K, Sens. Actuators B-Chem., 137, 529, 2009
  3. Sadek AZ, Wlodarski W, Kalantar-Zadeh K, Baker C, Kaner RB, Sens. Actuators A-Phys., 139, 53, 2007
  4. Zhang H, Liu R, Zheng J, Synth. Met., 167, 5, 2013
  5. Khuspe GD, Navale ST, Cougule MA, Patil VB, Synth. Met., 185, 1, 2013
  6. Murugan C, Subramanian E, Padiyan DP, Synth. Met., 192, 106, 2014
  7. Kumar PA, Chakraborty S, Ray M, Chem. Eng. J., 141(1-3), 130, 2008
  8. Mahanta D, Madras G, Radhakrishnan S, Patil S, J. Phys. Chem. B, 112(33), 10153, 2008
  9. Ruotolo LAM, Gubulin JC, React. Funct. Polym., 62(2), 141, 2005
  10. Lashkenari MS, Davodi B, Eisazadeh H, Korean J. Chem. Eng., 28(7), 1532, 2011
  11. Srinivasan SS, Ratnadurai R, Niemann MU, Phani AR, Goswami DY, Stefanakos EK, Int. J. Hydrog. Energy, 35(1), 225, 2010
  12. Li S, Zhang G, Jing G, Kan J, Synth. Met., 158, 242, 2008
  13. Huang JX, Virji S, Weiller BH, Kaner RB, J. Am. Chem. Soc., 125(2), 314, 2003
  14. Yan XB, Han ZJ, Yang Y, Tay BK, Sens. Actuators B-Chem., 123, 107, 2007
  15. Mi HY, Zhang XG, Yang SD, Ye XG, Luo JM, Mater. Chem. Phys., 112(1), 127, 2008
  16. Mi HY, Zhang XG, Ye XG, Yang SD, J. Power Sources, 176(1), 403, 2008
  17. Ciric-Marjanovic G, Synth. Met., 177, 1, 2013
  18. Tran HD, D’Arcy JM, Wang Y, Beltramo PJ, Strong VA, Kaner RB, J. Mater. Chem., 21, 3534, 2011
  19. Stejskal J, Sapurina I, Trchova M, Prog. Polym. Sci, 35, 1420, 2010
  20. Venancio EC, Wang PC, MacDiarmid AG, Synth. Met., 156, 357, 2006
  21. Pham QM, Kim JS, Kim S, Synth. Met., 160, 394, 2010
  22. Zhang Z, Wei Z, Zhang L, Wan M, Acta Mater., 53, 1373, 2005
  23. Li GC, Pang SP, Xie GW, Wang ZB, Peng HR, Zhang ZK, Polymer, 47(4), 1456, 2006
  24. Guo Y, Zhou Y, Eur. Polym. J., 43, 2292, 2007
  25. Thanpitcha T, Sirivat A, Jamieson AM, Rujiravanit R, Eur. Polym. J., 44, 3423, 2008
  26. Zhang Z, Deng J, Yu L, Wan M, Synth. Met., 158, 712, 2008
  27. Panella B, Kossykh L, Dettlaff-Weglikowska U, Hirscher M, Zerbi G, Roth S, Synth. Met., 151, 208, 2005
  28. Jurczyk MU, Kumar A, Srinivasan S, Stefanakos E, Int. J. Hydrog. Energy, 32(8), 1010, 2007
  29. Cho SJ, Choo K, Kim DP, Kim JW, Catal. Today, 120(3-4), 336, 2007
  30. Germain J, Frechet JMJ, Svec F, J. Mater. Chem., 17, 4989, 2007
  31. Rahy A, Rguig T, Cho SJ, Bunker CE, Yang DJ, Synth. Met., 161, 280, 2011
  32. Virji S, Kaner RB, Weiller BH, J. Phys. Chem. B, 110(44), 22266, 2006
  33. Fowler JD, Virji S, Kaner RB, Weiller BH, J. Phys. Chem. C, 113, 6444, 2009
  34. Wang PC, Dan YP, Liu LH, Mater. Chem. Phys., 144(1-2), 155, 2014
  35. Kendall JL, Canelas DA, Young JL, DeSimone JM, Chem. Rev., 99(2), 543, 1999
  36. Cooper AI, J. Mater. Chem., 10, 207, 2000
  37. Beckman EJ, J. Supercrit. Fluids, 28(2-3), 121, 2004
  38. Nalawade SP, Picchioni F, Janssen LPBM, Prog. Polym. Sci, 31, 19, 2006
  39. Kim MY, Yoo KP, Lim JS, Korean J. Chem. Eng., 24(5), 860, 2007
  40. Masters JG, Sun Y, MacDiarmid AG, Epstein AJ, Synth. Met., 41, 711, 1991
  41. Wang PC, Huang Z, MacDiarmid AG, Synth. Met., 101, 852, 1999
  42. Wang PC, Venancio EC, Sarno DM, MacDiarmid AG, React. Funct. Polym., 69(4), 217, 2009
  43. Jing X, Wang Y, Wu D, Qiang J, Ultrason. Sonochem., 14, 75, 2007
  44. Chiou NR, Epstein AJ, Synth. Met., 153, 69, 2005
  45. Rahy A, Sakrout M, Manohar S, Cho SJ, Ferraris J, Yang DJ, Chem. Mater., 20, 4808, 2008
  46. Tran HD, Wang Y, D’Arcy JM, Kaner RB, ACS Nano, 2, 1841, 2008
  47. Wang YY, Jing XL, J. Phys. Chem. B, 112(4), 1157, 2008
  48. Zhang X, Chan-Yu-King R, Jose A, Manohar SK, Synth. Met., 145, 23, 2004
  49. Chiou NR, Epstein AJ, Adv. Mater., 17(13), 1679, 2005
  50. Gupta K, Chakraborty G, Ghatak S, Jana PC, Meikap AK, J. Appl. Polym. Sci., 115(5), 2911, 2010
  51. Zhang D, Polym. Test, 26, 9, 2007
  52. Bhadra S, Khastgir D, Polym. Degrad. Stabil., 92, 1824, 2007
  53. Bhadra S, Khastgir D, Polym. Test, 27, 851, 2008
  54. Zhang LJ, Wan MX, Adv. Funct. Mater., 13(10), 815, 2003
  55. Angelopoulos M, Ray A, MacDiarmid AG, Synth. Met., 21, 21, 1987
  56. Armbruster DA, Pry T, Clin. Biochem. Rev., 29 Supp, S49, 2008
  57. MacDiarmid AG, Synth. Met., 125, 11, 2001
  58. Nicolas-Debarnot D, Poncin-Epaillard F, Anal. Chim. Acta, 475, 1, 2003