Issue
Korean Journal of Chemical Engineering,
Vol.33, No.1, 277-284, 2016
Phase behavior for the poly(alkyl methacrylate)+supercritical CO2+DME mixture at high pressures
The phase behavior curves of binary and ternary system were measured for poly(alkyl methacrylate) in supercritical CO2, as well as for the poly(alkyl methacrylate)+dimethyl ether (DME) (or 1-butene) in CO2. The solubility curves are reported for the poly(alkyl methacrylate)+DME in supercritical CO2 at temperature from (300 to 465) K and a pressure from (3.66 to 248) MPa. Also, The high-pressure static-type apparatus of cloud-point curve was tested by comparing the measured phase behavior data of the poly(methyl methacrylate) [PMMA]+CO2+20.0 and 30.4 wt% methyl methacrylate (MMA) system with literature data of 10.4, 28.8 and 48.4 wt% MMA concentration. The phase behavior data for the poly(alkyl methacrylate)+CO2+DME mixture were measured in changes of the pressure-temperature (p, T) slope and with DME concentrations. Also, the cloud-point pressure for the poly(alkyl methacrylate)+1-butene solution containing supercritical CO2 shows from upper critical solution temperature (UCST) region to lower critical solution temperature (LCST) region at concentration range from (0.0 to 95) wt% 1-butene at below 455 K and at below 245MPa.
[References]
  1. Beckman EJ, J. Supercrit. Fluids, 28(2-3), 121, 2004
  2. Kendall JL, Canelas DA, Young JL, DeSimone JM, Chem. Rev., 99(2), 543, 1999
  3. Luo JJ, Wu K, Cook T, Li J, Polym. Mater. Sci. Eng., 91, 711, 2004
  4. Yoon SD, Kim CR, Byun HS, Fluid Phase Equilib., 365, 97, 2014
  5. Kazarian S, Drugs Pharm. Sci., 138, 343, 2004
  6. Lee JC, Kim CR, Byun HS, Korean J. Chem. Eng., 31(12), 2266, 2014
  7. Shieh YT, Liu KH, J. Polym. Sci. B: Polym. Phys., 42(13), 2479, 2004
  8. Rindfleisch F, DiNoia TP, McHugh MA, J. Phys. Chem., 100(38), 15581, 1996
  9. Liu S, Lee HY, Yoon SD, Yoo KP, Byun HS, Ind. Eng. Chem. Res., 48(16), 7821, 2009
  10. Kirby CF, McHugh MA, Chem. Rev., 99(2), 565, 1999
  11. Dohrn R, Brunner G, Fluid Phase Equilib., 106(1-2), 213, 1995
  12. Christov M, Dohrn R, Fluid Phase Equilib., 202(1), 153, 2002
  13. Dohrn R, Peper S, Fonseca JMS, Fluid Phase Equilib., 288(1-2), 1, 2010
  14. Fonseca JMS, Dohrn R, Peper S, Fluid Phase Equilib., 300(1-2), 1, 2011
  15. Haschets CW, Shine AD, Macromolecules, 26, 5052, 1993
  16. Byun HS, McHugh MA, Ind. Eng. Chem. Res., 39(12), 4658, 2000
  17. Maderek E, Schulz GV, Wolf BA, Eur. Polym. J., 19, 963, 1983
  18. Lora M, McHugh MA, Fluid Phase Equilib., 157(2), 285, 1999
  19. Jang YS, Choi YS, Byun HS, Korean J. Chem. Eng., 32(5), 958, 2015
  20. Kim SE, Yoon SD, Yoo KP, Byun HS, Korean J. Chem. Eng., 26(1), 199, 2009
  21. Behrenst PK, Sandle SI, J. Chem. Eng. Data, 28, 52, 1983
  22. Tsang CY, Streett WB, J. Chem. Eng. Data, 26, 155, 1981
  23. Nam SG, Lee BC, Korean J. Chem. Eng., 30(2), 474, 2013
  24. Chirico RD, Frenkel M, Diky VV, Marsh KN, Wilhoit RC, J. Chem. Eng. Data, 48(5), 1344, 2003
  25. Yoon SD, Byun HS, J. Chem. Thermodyn., 71, 91, 2014
  26. Poling BE, Prausnitz JM, O’Connell JP, The Properties of Gases and Liquid, 5th Ed.; McGraw-Hill, New York (2001).
  27. Albrecht KL, Stein FP, Han SJ, Gregg CJ, Radosz M, Fluid Phase Equilib., 117(1-2), 84, 1996
  28. Wolf BA, Blaum GJ, J. Polym. Sci. B: Polym. Phys., 13, 1115, 1975
  29. Patterson D, Pure Appl. Chem., 31, 133, 1972