Issue
Korean Journal of Chemical Engineering,
Vol.33, No.1, 271-276, 2016
Excess volume and excess enthalpy of binary mixtures composed of 1,2-dichloropropane and 1-alkanol (C5-C8)
The excess molar volumes and excess molar enthalpies at T=298.15 K and atmospheric pressure for the binary systems {CH3CHClCH2Cl (1)+CH3(CH2)n.1OH (2)} (n=5 to 8) have been determined over the whole range of composition from the density and heat flux measurements using a digital vibrating-tube densimeter and an isothermal calorimeter, respectively. The measured excess molar volumes of all binary mixtures showed positive symmetrical trend with values increasing with chain length of 1-alkanol. Similarly, excess enthalpy values of all binary mixtures showed skewed endothermic behavior with values increasing with chain length of 1-alkanol. The maxima of excess molar enthalpy values were observed around x1=0.65 with excess enthalpy value ranging from 1,356.8 J/mol (1-pentanol) to 1,543.4 J/mol (1-octanol). The experimental results of both Hm E and Vm E are fitted to a modified version of Redlich-Kister equation using the Pade approximant to correlate the composition dependence. The experimental Hm E data were also fitted to three local-composition models (Wilson, NRTL, and UNIQUAC). The correlation of excess enthalpy data in these binary systems using UNIQUAC model provides the most appropriate results.
[References]
  1. Narendra K, Srinivasu C, Kalpana C, Murthy PN, J. Therm. Anal. Calorim., 107, 25, 2012
  2. Rezanova EN, Kammerer K, Lichtenthaler RN, J. Chem. Eng. Data, 45, 124, 2000
  3. Mchaweh A, Alsaygh A, Nasrifar K, Moshfeghian M, Fluid Phase Equilib., 224(2), 157, 2004
  4. Kim Y, Kim M, Korean Chem. Eng. Res., 42(4), 426, 2004
  5. Kim J, Kim M, Korean Chem. Eng. Res., 44(5), 444, 2006
  6. Sen D, Kim MG, Thermochim. Acta, 471(1-2), 20, 2008
  7. Sen D, Kim MG, Korean J. Chem. Eng., 26(3), 806, 2009
  8. Sen D, Kim MG, Fluid Phase Equilib., 280(1-2), 94, 2009
  9. Sen D, Kim MG, Fluid Phase Equilib., 285(1-2), 30, 2009
  10. Sen D, Kim MG, Fluid Phase Equilib., 303(1), 85, 2011
  11. Kim MG, Korean J. Chem. Eng., 29(9), 1253, 2012
  12. Kim MG, Korean J. Chem. Eng., 31(2), 315, 2014
  13. Morrison RT, Boyd RN, Organic chemistry, 6th Ed., Prentice Hall, NJ (1992).
  14. Maryott AA, Smith ER, Table of Dielectric Constants of Pure Liquids, National Bureau of Standards Circular 514, Washington D.C. (1951).
  15. Riddick JA, Bunger WB, Sakano TK (Eds.), Organic Solvents, vol. 2, 4th Ed., Wiley-Interscience, New York (1986).
  16. Redlich O, Kister AT, Ind. Eng. Chem., 40, 345, 1948
  17. Baker GA, Graves-Morris P, Pade Approximants, Cambridge Univ. Press, New York (1996).
  18. Wilson GM, J. Am. Chem. Soc., 86, 127, 1964
  19. Renon H, Prausnitz JM, AIChE J., 14, 135, 1968
  20. Abrams DS, Prausnitz JM, AIChE J., 21, 116, 1975
  21. O’Neil MJ, Heckelman PE, Koch CB, Roman KJ (Eds.), Merck Index, 14th Ed., Merck Research Laboratories, NJ (2006).
  22. Poling BE, Prausnitz JM, O’Connell JP, The Properties of Gas and Liquids, 5th Ed., McGraw-Hill, New York (2000).
  23. Bevington P, Data Reduction and Error Analysis for the Physical Sciences, 3rd Ed., McGraw-Hill, New York (2003).
  24. Ott JB, Sipowska JT, J. Chem. Eng. Data, 41(5), 987, 1996