Issue
Korean Journal of Chemical Engineering,
Vol.33, No.1, 255-259, 2016
Hydrogen bond dynamics in liquid water: Ab initio molecular dynamics simulation
The effect of intermolecular interaction on the distribution of the harmonic vibrational frequencies of water molecules was investigated through ab initio molecular dynamics simulations based on the Born-Oppenheimer approach. For single water, the effect of the dynamics of the oxygen atom in single water and the simulation time step on the frequency distribution were examined. The distributions of the OH stretching and HOH bending vibrational frequencies of liquid water were compared to those of single water. The probability distributions of the change in OH bond length and the lifetime of the dangling OH bond were also obtained. The distribution of the frequencies was strongly affected by the long lifetime of the dangling OH bond, resulting in the formation of hydrogen bonds between water molecules.
[References]
  1. Hashimoto K, Choi AR, Furutani Y, Jung KH, Kandori H, Biochem., 49, 3343, 2010
  2. Haupts U, Tittor J, Oesterhelt D, Annu. Rev. Biophys. Biomol. Struct., 28, 367, 1999
  3. Kandori H, Yamazaki Y, Sasaki J, Needleman R, Lanyi JK, Maeda A, J. Am. Chem. Soc., 117(7), 2118, 1995
  4. Kandori H, Biochim. Biophys. Acta, 1460, 177, 2000
  5. Lanyi JK, J. Struct. Biol., 124(2-3), 164, 1998
  6. Luecke H, Schobert B, Richter HT, Cartailler JP, Lanyi JK, J. Mol. Biol., 291, 899, 1999
  7. Maeda A, Sasaki J, Yamazaki Y, Needleman R, Lanyi JK, Biochem., 33, 1713, 1994
  8. Daniel J, Solomon S, Saunders R, Portman R, Miller D, Madsen W, J. Geophys. Res., 104, 16785, 1999
  9. Daniel JS, Solomon S, Kjaergaard HG, Schofield DP, Geophys. Res. Lett., 31, L06118, 2004
  10. Hill C, Jones R, J. Geophys. Res., 105, 9421, 2000
  11. Huisken F, Kaloudis M, Kulcke A, J. Chem. Phys., 104(1), 17, 1996
  12. Kandori H, Shichida Y, J. Am. Chem. Soc., 122(47), 11745, 2000
  13. Low GR, Kjaergaard HG, J. Chem. Phys., 110(18), 9104, 1999
  14. Ptashnik IV, Smith KM, Shine KP, Newnham DAQ, J. R. Meteorol. Soc., 130, 2391, 2004
  15. Schofield DP, Kjaergaard HG, Phys. Chem. Chem. Phys., 5, 3100, 2003
  16. Vaida V, Daniel J, Kjaergaard HG, Goss LM, Tuck AFQ, Meteorol. Soc., 127, 1627, 2001
  17. Benedict WS, Gailar N, Plyler EK, Chem. Phys. Lett., 24, 1139, 1956
  18. Bansil R, Berger T, Toukan MAR, Chen SH, Chem. Phys. Lett., 132, 165, 1986
  19. Curtiss LA, Pople JA, J. Mol. Spectrosc., 55, 1, 1975
  20. Kim JS, Lee JY, Lee S, Mhin BJ, Kim KS, J. Chem. Phys., 102(1), 310, 1995
  21. Kumar N, Neogi S, Kent PRC, Bandura AV, Kubicki JD, Wesolowski DJ, Cole D, Sofo JO, J. Phys. Chem. C, 113, 13732, 2009
  22. Oder R, Goring DAI, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 27, 2285, 1971
  23. Palese S, Buontempo JT, Schilling L, Lotshaw WT, Tanimura Y, Mukamel S, Miller RJ, J. Phys. Chem., 98(48), 12466, 1994
  24. Perera PN, Fega KR, Lawrence C, Tomlinson-Phillips J, Ben-Amotz D, P.N.A.S., 106, 12230, 2009
  25. Schofield DP, Lane JR, Kjaergaard HG, J. Phys. Chem. A, 111(4), 567, 2007
  26. Silvestrelli PL, Bernasconi M, Parrinello M, Chem. Phys. Lett., 277, 478, 1997
  27. Thrane L, Jacobsen RH, Jepsen PU, Keiding SR, Chem. Phys. Lett., 240, 330, 1995
  28. Woods KN, Wiedemann H, Chem. Phys. Lett., 393(1-3), 159, 2004
  29. VandeVondele J, Krack M, Mohamed F, Parrinello M, Chassaing T, Hutter J, Comput. Phys. Commun., 167, 103, 2005