Issue
Korean Journal of Chemical Engineering,
Vol.33, No.1, 238-247, 2016
Application of novel nanobiocomposites for removal of nickel(II) from aqueous environments: Equilibrium, kinetics, thermodynamics and ex-situ studies
The current study presents a novel approach for the removal of Ni(II) from aqueous environments using plant gum-based (PG) and clay-based (CL) nanobiocomposite (NBC) composed of ZnO nanoparticles and chitosan. Parameters like pH, contact time, temperature, initial metal concentration and adsorbent dosage were optimized. Under optimized conditions, maximum removal of Ni(II) was noted as 90.1% and 95.5% in the case of PG-NBC and CLNBC, respectively. Equilibrium studies suggested a homogeneous mode of adsorption. Good linearity was observed for the pseudo-first order kinetic model, suggesting a physical mode of adsorption. Thermodynamic studies showed an endothermic and spontaneous nature of adsorption. The mechanism was further elucidated using SEM, EDX, AFM and FT-IR analysis. Ex-situ studies showed a maximum Ni(II) removal of 87.34% from electroplating wastewater using CL-NBC in column mode. Regeneration studies suggested that CL-NBC could be consistently reused up to 4 cycles.
[References]
  1. He L, Wang BB, Liu DD, Qian KS, Xu HB, Korean J. Chem. Eng., 31(2), 343, 2014
  2. Mukherjee AL, Environmental Pollution and Health Hazardscauses and control, Golgotia Publications, New Delhi (1986).
  3. Parker SP, Encyclopedia of Environmental Science, 2nd Ed. McGraw Hill, New York (1980).
  4. Kwak IS, Won SW, Choi SB, Mao J, Kim S, Chung BW, Yun YS, Korean J. Chem. Eng., 28(3), 927, 2011
  5. Can MY, Kaya Y, Algur OF, Bioresour. Technol., 97(14), 1761, 2006
  6. Wu DB, Niu CJ, Li DQ, Bai Y, J. Alloy. Compd., 374, 442, 2004
  7. Runtti H, Tuomikoskia S, Kangas T, Lassi U, Kuokkanen T, Ramo J, J. Water Process Eng., 4, 12, 2014
  8. Celis R, Adelano MA, Hermosin MC, Cornejo J, J. Hazard. Mater., 9, 67, 2012
  9. Hassani A, Soltani RDC, Karaca S, Khataee A, J. Ind. Eng. Chem., 21, 1197, 2015
  10. Dehaghi SM, Rahmanifar B, Moradi AM, Azar PA, J. Saudi Chem. Soc., 18, 348, 2014
  11. An JH, Dultz S, Clay Clay Min., 56, 549, 2008
  12. Islam M, Mishra PC, Patel R, J. Hazard. Mater., 189(3), 755, 2011
  13. Jiang HL, Chen PH, Luo SL, Tu XM, Cao Q, Shu M, Appl. Surf. Sci., 284, 942, 2013
  14. Marquez GE, Ribeiro MJP, Ventura JM, Labrincha JA, Ceram. Int., 30, 111, 2004
  15. Vieira MGA, Neto AFA, Gimenes ML, da Silva MGC, J. Hazard. Mater., 177(1-3), 362, 2010
  16. Olgun A, Atar N, J. Ind. Eng. Chem., 18(5), 1751, 2012
  17. Juby KA, Dwivedi C, Kumar M, Kota S, Misra HS, Bajaj PN, Carbohydr. Polym., 89, 906, 2012
  18. Das D, Varghese LR, Das N, Desalination, 360, 35, 2015
  19. Kermani AS, Miri S, Korean J. Chem. Eng., 10.1007/s11814-014-0285-y., 2015
  20. Langmuir I, J. Am. Chem. Soc., 38, 2221, 1916
  21. Freundlich HMF, J. Phys. Chem., 57, 385, 1906
  22. Dubinin MM, Chem. Rev., 60, 235, 1960
  23. Ho YS, Scientometrics, 59, 171, 2004
  24. Ho YS, Water Res., 40, 119, 2006
  25. Das D, Basak G, Lakshmi V, Das N, Biochem. Eng. J., 64, 30, 2012
  26. Khan SA, Rehman R, Khan MA, Waste Manage., 15, 271, 1995
  27. Vijayaraghavan K, Balasubramanian R, Chem. Eng. J., 163(3), 337, 2010
  28. Vinodhini V, Das N, Desalination, 264(1-2), 9, 2010
  29. Yang ST, Li JX, Shao DD, Hu J, Wang XK, J. Hazard. Mater., 166(1), 109, 2009
  30. Parab H, Joshi S, Shenoy N, Lali A, Sarma US, Sudersanan M, Process Biochem., 41, 609, 2006
  31. Malkoc E, Nuhoglu Y, J. Hazard. Mater., 127(1-3), 120, 2005
  32. Malkoc E, J. Hazard. Mater., 137(2), 899, 2006
  33. Popuri SR, Vijaya Y, Boddu VM, Abburi K, Bioresour. Technol., 100(1), 194, 2009
  34. Das D, Das N, Mathew L, J. Hazard. Mater., 184(1-3), 765, 2010
  35. Vinod VTP, Sashidhar RB, Sreedhar B, J. Hazard. Mater., 178(1-3), 851, 2010
  36. Jeon C, Cha JH, J. Ind. Eng. Chem., 10.1016/j.jiec.2014.09.016., 2014
  37. Charumathi D, Das N, Desalination, 285, 22, 2012
  38. Das D, Varshini JS, Das N, Miner. Eng., 69, 40, 2014