Issue
Korean Journal of Chemical Engineering,
Vol.33, No.1, 189-196, 2016
Electrochemical degradation of the Acid Orange 10 dye on a Ti/PbO2 anode assessed by response surface methodology
The decolorization and degradation of the synthetic aqueous solution of the Acid Orange 10 (AO10) dye on Ti/PbO2 anode were investigated using the response surface methodology based on central composite design with three variables: current density, pH, and supporting electrolyte concentration. The Ti/PbO2 electrode was prepared by the electrochemical deposition method. The optimum conditions for AO10 decolorization in synthetic dye solution were electrolyte concentration of 117.04 mM, pH of 12.05, and current density of 73.64 mA cm.2. The results indicated that the most effective factor for AO10 degradation was current density. Furthermore, the color removal efficiency significantly increased with increasing current density. To measure AO10 mineralization under optimum conditions, the chemical oxygen demand (COD) and total organic carbon (TOC) removal were evaluated. Under these conditions, decolorization was completed and 63% removal was recorded for COD and 60% for TOC after 100 min of electrolysis.
[References]
  1. dos Santos AB, Cervantes FJ, van Lier JB, Bioresour. Technol., 98(12), 2369, 2007
  2. Mondal S, Environ. Eng. Sci., 25, 383, 2008
  3. Jovic-Jivicic N, Milutinovic-Nikolic A, Bankovic P, Mojovic Z, Zunic M, Grzetic I, Jovanovic D, Appl. Clay Sci., 47, 452, 2010
  4. Entezari MH, Al-Hoseini ZS, Ashraf N, Ultrason. Sonochem., 15, 433, 2008
  5. Meric S, Kaptan D, Olmez T, Chemosphere, 54, 435, 2004
  6. Saratale R, Saratale G, Chang J, Govindwar S, J. Taiwan Inst. Chem. Eng., 42, 138, 2011
  7. Xu XR, Li XZ, Sep. Purif. Technol., 72(1), 105, 2010
  8. Abdelkader NBH, Bentouami A, Derriche Z, Bettahar N, de Menorval LC, Chem. Eng. J., 169(1-3), 231, 2011
  9. Giri AK, Mukherjee A, Talukder G, Sharma A, Toxicol. Lett., 44, 253, 1988
  10. Sun SP, Li CJ, Sun JH, Shi SH, Fan MH, Zhou Q, J. Hazard. Mater., 161(2-3), 1052, 2009
  11. Martinez-Huitle CA, Brillas E, Appl. Catal. B: Environ., 87(3-4), 105, 2009
  12. Raghu S, Basha CA, J. Hazard. Mater., 139(2), 381, 2007
  13. Rodgers JD, Jedral W, Bunce NJ, Environ. Sci. Technol., 33, 1453, 1999
  14. Rajkumar D, Song BJ, Kim JG, Dyes Pigment., 72, 2007
  15. Xu H, Li AP, Qi Q, Jiang W, Sun YM, Korean J. Chem. Eng., 29(9), 1178, 2012
  16. Aquino JM, Pereira GF, Rocha RC, Bocchi N, Biaggio SR, J. Hazard. Mater., 192(3), 1275, 2011
  17. Murphy OJ, Hitchens GD, Kaba L, Verostko CE, Water Res., 26, 443, 1992
  18. Vlyssides A, Loizidou M, Karlis P, Zorpas A, Papaioannou D, J. Hazard. Mater., 70, 41, 1999
  19. Wang J, Deo RP, Poulin P, Mangey M, J. Am. Chem. Soc., 125(48), 14706, 2003
  20. Carneiro PA, Osugi ME, Fugivara CIS, Boralle N, Furlan M, Zanoni MVB, Chemosphere, 59, 431, 2005
  21. Sanroman M, Pazos M, Ricart M, Cameselle C, Chemosphere, 57, 233, 2004
  22. Xiong Y, Strunk PJ, Xia H, Zhu X, Karlsson HT, Water Res., 35, 4226, 2001
  23. Santos V, Morao A, Pacheco MJ, Ciriaco L, Lopes A, J. Environ. Eng. Manage., 18, 193, 2008
  24. Cao JL, Zhao HY, Cao FH, Zhang JQ, Cao CN, Electrochim. Acta, 54(9), 2595, 2009
  25. Comninellis C, Chen G, Electrochemistry for the Environment, Springer (2010).
  26. Panizza M, Cerisola G, Chem. Rev., 109(12), 6541, 2009
  27. Siedlecka EM, Stolte S, Golebiowski M, Nienstedt A, Stepnowski P, Thoming J, Sep. Purif. Technol., 101, 26, 2012
  28. Radha K, Sridevi V, Kalaivani K, Raj M, Desalin. Water Treat., 7, 6, 2009
  29. Andrade LS, Tasso TT, da Silva DL, Rocha RC, Bocchi N, Biaggio SR, Electrochim. Acta, 54(7), 2024, 2009
  30. Montgomery DC, Design and analysis of experiments, 7th Ed., John Wiley & Sons, New York (2009).
  31. Aquino JM, Rocha-Filho RC, Bocchi N, Biaggio SR, J. Environ. Chem. Eng., 1, 954, 2013
  32. Fernandes A, Morao A, Magrinho M, Lopes A, Goncalves I, Dyes Pigment., 61, 287, 2004
  33. Polcaro AM, Palmas S, Renoldi F, Mascia M, J. Appl. Electrochem., 29(2), 147, 1999
  34. Rio AD, Benimeli M, Molina J, Bonastre J, Cases F, Int. J. Electrochem. Sci., 7, 13074, 2012
  35. Ghalwa NA, Gaber M, Khedr AM, Salem MF, Int. J. Electrochem. Sci., 7, 6044, 2012
  36. Xu L, Guo Z, Du LS, He J, Electrochim. Acta, 97, 150, 2013
  37. Myers RH, Montgomery DC, Anderson-Cook CM, Response surface methodology: Process and product optimization using designed experiments, Wiley (2009).
  38. Anderson TW, Darling DA, J. Am. Stat. Assoc., 49, 765, 1954
  39. Breusch TS, Pagan AR, Econometrica, 47, 1287, 1979
  40. Durbin J, Watson GS, Biometrika, 37, 409, 1950
  41. Durbin J, Watson GS, Biometrika, 38, 159, 1951
  42. Efron B, Gong G, J. Am. Stat. Assoc., 37, 36, 1983
  43. Kutner MH, Nachtsheim C, Neter J, Applied linear regression models, McGraw-Hill/Irwin (2004).
  44. Zhang C, Jiang YH, Li YL, Hu ZX, Zhou L, Zhou MH, Chem. Eng. J., 228, 455, 2013
  45. Dai QZ, Shen H, Xia YJ, Chen F, Wang JD, Chen JM, Sep. Purif. Technol., 104, 9, 2013
  46. Niu J, Maharana D, Xu J, Chai Z, Bao Y, J. Environ. Sci., 25, 1424, 2013
  47. Zhong C, Wei K, Han W, Wang L, Sun X, Li J, J. Electroanal. Chem., 705, 68, 2013
  48. Zhou MH, He JJ, J. Hazard. Mater., 153(1-2), 357, 2008
  49. Djafarzadeh N, Safarpour M, Khataee A, Korean J. Chem. Eng., 31(5), 785, 2014
  50. Niu J, Bao Y, Li Y, Chai Z, Chemosphere, 92, 1571, 2013
  51. Shao D, Liang JD, Cui XM, Xu H, Yan W, Chem. Eng. J., 244, 288, 2014
  52. Alvarez-Guerra E, Dominguez-Ramos A, Irabien A, Chem. Eng. Res. Des., 89(12A), 2679, 2011