Issue
Korean Journal of Chemical Engineering,
Vol.33, No.1, 114-119, 2016
Preparation of Cu/ZnO catalyst using a polyol method for alcohol-assisted low temperature methanol synthesis from syngas
A polyol method was used to prepare Cu/ZnO catalysts for alcohol-assisted low temperature methanol synthesis from syngas. Unlike conventional low temperature methanol synthesis, ethanol was employed both as a solvent and a reaction intermediate. Catalyst characterization revealed that Cu/ZnO catalysts were successfully and efficiently prepared using the polyol method. Various preparation conditions such as PVP concentration and identity of ZnO precursor strongly influenced the catalytic activity of Cu/ZnO catalysts. Copper dispersion and catalyst morphology played key roles in determining the catalytic performance of the Cu/ZnO catalyst in alcohol-assisted low temperature methanol synthesis. A high copper dispersion and platelike Cu/ZnO structure led to high catalytic activity. Among the catalysts tested, 5_Cu/ZnO_Zn(Ac)2 had the best catalytic performance due to its high copper dispersion.
[References]
  1. Waugh KC, Catal. Today, 15, 51, 1992
  2. Jung KD, Joo OS, Catal. Lett., 84(1-2), 21, 2002
  3. Tijm PJA, Waller FJ, Brown DM, Appl. Catal. A: Gen., 211, 275, 2001
  4. Fujita S, Kanamori Y, Satriyo AM, Takezawa N, Catal. Today, 45(1-4), 241, 1998
  5. Lee JS, Han SH, Kim HG, Lee KH, Kim YG, Korean J. Chem. Eng., 17(3), 332, 2000
  6. Shishido T, Yamamoto Y, Morioka H, Takaki K, Takehira K, Appl. Catal. A: Gen., 263(2), 249, 2004
  7. Li Z, Yan SW, Fan H, Fuel, 106, 178, 2013
  8. Khodashenas B, Ghorbani HR, Korean J. Chem. Eng., 31(7), 1105, 2014
  9. Shi L, Shen WZ, Yang GH, Fan XJ, Jin YZ, Zeng CY, Matsuda K, Tsubaki N, J. Catal., 302, 83, 2013
  10. Shi L, Tao K, Yang RG, Meng FZ, Xing C, Tsubaki N, Appl. Catal. A: Gen., 401(1-2), 46, 2011
  11. Witoon T, Permsirivanich T, Donphai W, Jaree A, Chareonpanich M, Fuel Process. Technol., 116, 72, 2013
  12. Nishida K, Atake I, Li D, Shishido T, Oumi Y, Sano T, Takehira K, Appl. Catal. A: Gen., 337(1), 48, 2008
  13. Tanaka Y, Utaka T, Kikuchi R, Sasaki K, Eguchi K, Appl. Catal. A: Gen., 238(1), 11, 2003
  14. Park BK, Jeong S, Kim D, Moon J, Lim S, Kim JS, J. Colloid Interface Sci., 311(2), 417, 2007
  15. Altincekic TG, Boz I, Bull. Mat. Sci., 31, 619, 2008
  16. Bobadilla LF, Garcia C, Delgado JJ, Sanz O, Sarria FR, Centeno MA, Odriozola JA, J. Magn. Magn. Mater., 324, 4011, 2012
  17. Lu CY, Tseng HH, Wey MY, Liu LY, Chuang KH, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 157, 105, 2009
  18. Chuang KH, Shih K, Lu CY, Wey MY, Int. J. Hydrog. Energy, 38(1), 100, 2013
  19. Song KC, Lee SM, Park TS, Lee BS, Korean J. Chem. Eng., 26(1), 153, 2009
  20. Byeon JH, Kim YW, Ultrason. Sonochem., 19, 209, 2012
  21. Boz I, Altincekic TG, React. Kinet. Mech. Catal., 102, 195, 2011
  22. Bayrakdar E, Altincekic TG, Oksuzomer MAF, Fuel Process. Technol., 110, 167, 2013
  23. Lee JM, Jun YD, Kim DW, Lee YH, Oh SG, Mater. Chem. Phys., 114(2-3), 549, 2009
  24. Neiva EGC, Bergamini MF, Oliveira MM, Marcolino LH, Zarbin AJG, Sens. Actuators B-Chem., 196, 574, 2014
  25. Reubroycharoen P, Yamagami T, Vitidsant T, Yoneyama Y, Ito M, Tsubaki N, Energy Fuels, 17(4), 817, 2003
  26. Mahajan D, Sapienza RS, Slegeir WA, O’Hare TE, US Patent, 4,935,395 (1990).
  27. Sapienza RS, Slegeir WA, O’Hare TE, Mahajan D, US Patent, 4,623,634 (1986).
  28. Sapienza RS, Slegeir WA, O’Hare TE, Mahajan D, US Patent, 4,619,946 (1986).
  29. Mahajan D, Slegeir WA, Sapienza RS, O’Hare TE, US Patent, 4,613,623 (1986).
  30. Lee ES, Aika KI, J. Mol. Catal. A-Chem., 141, 241, 1999
  31. Sapienza RS, Slegeir WA, Segeir WA, O’Hare TE, Mahajan D, US Patent, 4,614,749 (1986).
  32. Tsubaki N, Ito M, Fujimoto K, J. Catal., 197(1), 224, 2001
  33. Zeng J, Tsubaki N, Fujimoto K, Sci. China Ser. B, 45, 106, 2002
  34. Hu B, Yamaguchi Y, Fujimoto K, Catal. Commun., 10, 1620, 2009
  35. Santacesaria E, Carotenuto G, Tesser R, Di Serio M, Chem. Eng. J., 179, 209, 2012