Issue
Korean Journal of Chemical Engineering,
Vol.33, No.1, 107-113, 2016
Preparation of titanium dioxide/tungsten disulfide composite photocatalysts with enhanced photocatalytic activity under visible light
Titanium dioxide/tungsten disulfide (TiO2/WS2) composite photocatalysts were fabricated via a one-step hydrothermal synthesis process, using TiCl4 as titanium source and bulk WS2 as sensitizer. The morphology, structure, specific surface area and optical absorption properties of the composite photocatalysts were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), specific surface area analyzer and ultraviolet-visible diffuse reflection spectrum (UV-vis DRS), respectively. The photocatalytic activity of as-prepared photocatalysts was evaluated by the degradation of methyl orange (MO) under illumination of 500W Xenon lamp. The results indicated that TiO2/WS2 composite photocatalysts possessed excellent photocatalytic activity, and ~95% of the degradation rate for MO was reached when molar ratio of WS2 to TiO2 was 0.004 and the irradiation time was 60 min. Moreover, the carrier trapping experiment and fluorescence spectra showed that ·O2- was the key component in the photocatalytic degradation process and O2 was reduced to be ·O2- by the electrons from the conduction band of TiO2 and WS2 for the degradation of MO.
[References]
  1. Zhu WS, Xu YH, Li HM, Dai BL, Xu H, Wang C, Chao YH, Liu H, Korean J. Chem. Eng., 31, 2, 2014
  2. Zhao Y, Li CZ, Liu XH, Go F, Du HL, Shi LY, Appl. Catal. B: Environ., 79(3), 208, 2008
  3. Kadam AN, Dhabbe RS, Kokate MR, Gaikwad YB, Garadkar KM, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 133, 669, 2014
  4. Qin GH, Zhang Y, Ke XB, Tong XL, Sun Z, Liang M, Xue S, Appl. Catal. B: Environ., 129, 599, 2013
  5. Zhou XF, Lu J, Cao JL, Xu MF, Wang ZS, Ceram. Int., 40, 3975, 2014
  6. Mahmood A, Woo SI, Korean J. Chem. Eng., 30, 10, 2013
  7. Jing DW, Guo LJ, Catal. Commun., 8, 795, 2007
  8. Ho WK, Yu JC, Lin J, Yu JG, Li PS, Langmuir, 20(14), 5865, 2004
  9. Jang JS, Li W, Oh SH, Lee JS, Chem. Phys. Lett., 425(4-6), 278, 2006
  10. Hong E, Choi T, Kim JH, Korean J. Chem. Eng., 32, 3, 2015
  11. Thomalla M, Tributsch H, J. Phys. Chem. B, 110(24), 12167, 2006
  12. Jana S, Bera P, Chakraborty B, Mitra BC, Mondal A, Appl. Surf. Sci., 317, 154, 2014
  13. Suwarnkar MB, Dhabbe RS, Kadam AN, Garadkar KM, Ceram. Int., 40, 5489, 2014
  14. Kaur J, Singhal S, Ceram. Int., 40, 7147, 2014
  15. Leghari SAK, Sajjad S, Chen F, Zhang JL, Chem. Eng. J., 166(3), 906, 2011
  16. Liu SS, Huang JF, Cao LY, Li JY, Ouyang HB, Tao XW, Liu C, Mater. Sci. Semicond. Process, 25, 106, 2014
  17. Nguyen-Phan TD, Pham VH, Chung JS, Chhowalla M, Asefa T, Kim WJ, Shin EW, Appl. Catal. A: Gen., 473, 21, 2014
  18. Xu DY, Cheng F, Lu QZ, Dai P, Ind. Eng. Chem. Res., 53(7), 2625, 2014
  19. Li WJ, Li DZ, Xian JJ, Chen W, Hu Y, Shao Y, Fu XZ, J. Phys. Chem. C, 114, 21482, 2010
  20. Liu WH, Hu QZ, Mo F, Hu JJ, Feng Y, Tang HW, Ye HN, Miao S, J. Mol. Catal. A-Chem., 395, 222, 2014
  21. Cao J, Luo BD, Lin HL, Xu BY, Chen SF, J. Hazard. Mater., 217, 107, 2012