Issue
Korean Journal of Chemical Engineering,
Vol.33, No.1, 57-62, 2016
Microfluidic room temperature ionic liquid droplet generation depending on the hydrophobicity and interfacial tension
We have characterized micro-droplet generation using water immiscible hexafluorophosphate ([PF6])- and bis(trifluoromethylsulfonyl)imide ([Tf2N])-based room temperature ionic liquids (RTILs). The interfacial tension between total 7 RTILs and phosphate buffered saline (PBS) was measured using a tensiometer for the first time. PBS is one of the most commonly used buffer solutions in cell-related researches. The measured interfacial tension ranges from 8.51 to 11.62 and from 9.56 to 13.19 for [Tf2N]- and [PF6]-based RTILs, respectively. The RTILs micro-droplets were generated in a microfluidic device. The micro-droplet size and generation frequency were determined based on continuous monitoring of light transmittance at the interface in microchannel. The size of RTIL micro-droplets was inversely proportional to the increase of PBS solution flow rate and RTILs hydrophobicity, while droplet generation frequency was proportional to those changes. The measured size of RTILs droplets ranged from 0.6 to 10.5 nl, and from 1.0 to 17.1 nl for [Tf2N]- and [PF6]-based RTILs, respectively. The measured frequency of generated RTILs droplets ranged from 2.3 to 37.2 droplet/min, and from 2.7 to 17.1 droplet/min for [Tf2N]- and [PF6]-based RTILs, respectively. The capillary numbers were calculated depending on the RTILs, and ranged from 0.51×10.3 to 1.06×10.3 and from 5.00×10.3 to 8.65×10.3, for [Tf2N]- and [PF6]-based RTILs, respectively. The interfacial tension between RTILs and PBS will contribute to developing bioprocesses using immiscible RTILs. Also, the RTILs micro-droplets will enable the high-throughput monitoring of various biological and chemical reactions using RTILs as new reaction media.
[References]
  1. Lee SH, Ha SH, Hiep NM, Chang WJ, Koo YM, J. Biotechnol., 133, 486, 2008
  2. Yassaghi G, Davoodnia A, Allameh S, Atefeh ZB, Niloofar TH, Bull. Korean Chem. Soc., 33, 2724, 2012
  3. Moon YH, Lee SM, Ha SH, Koo YM, Korean J. Chem. Eng., 23(2), 247, 2006
  4. Annapureddy HVR, Dang LX, J. Phys. Chem. B, 117(28), 8555, 2013
  5. Lee SH, Doan TTN, Ha SH, Chang WJ, Koo YM, J. Mol. Catal. B-Enzym., 47, 129, 2007
  6. Lee JK, Kim MJ, J. Org. Chem., 67, 6845, 2002
  7. Belder D, Angew. Chem.-Int. Edit., 44, 3521, 2005
  8. Krishna KS, Li Y, Li S, Kumar CSSR, Adv. Drug Deliv. Rev., 65, 1470, 2013
  9. Zhang Y, Bailey V, Puleo CM, Easwaran H, Griffiths E, Herman JG, Baylin SB, Wang TH, Lab Chip, 9, 1059, 2009
  10. Chen DLL, Li L, Reyes S, Adamson DN, Ismagilov RF, Langmuir, 23(4), 2255, 2007
  11. Nisisako T, Torii T, Higuchi T, Chem. Eng. J., 101(1-3), 23, 2004
  12. Aketagawa K, Hirama H, Torii T, J. Mater. Sci. Chem. Eng., 1, 1, 2013
  13. Song H, Ismagilov RF, J. Am. Chem. Soc., 125(47), 14613, 2003
  14. Sjostrom L, Joensson HN, Svahn HA, Lab Chip, 13, 1754, 2013
  15. Thorsen T, Roberts RW, Amold FH, Quake SR, Phys. Rev. Lett., 86, 4163, 2001
  16. Dreyfus R, Tabeling P, Willaime H, Phys. Rev. Lett., 90, 144505, 2003
  17. Zhao CX, Adv. Drug Deliv. Rev., 65, 1420, 2013
  18. Courtois F, Olguin LF, Whyte G, Bratton D, Huck WTS, Abell C, Hollfelder F, Chem. Biochem., 9, 439, 2008
  19. Cygan ZT, Cabral JT, Beers KL, Amis EJ, Langmuir, 21(8), 3629, 2005
  20. Lee J, Kim MJ, Lee HH, Langmuir, 22(5), 2090, 2006
  21. Chatterjee DD, Hetayothin B, Wheeler AR, King DJ, Garrell RL, Lab Chip, 6, 199, 2006
  22. de Mello AJ, Habgood M, Lancaster NL, Welton T, Wootton RCR, Lab Chip, 4, 417, 2004
  23. Dossi N, Toniolo R, Pizzariello A, Carrilho E, Piccin E, Battistion S, Bontempelli G, Lab Chip, 12, 153, 2012
  24. Hoshino T, Fujita K, Higashi A, Sakiyama K, Ohno H, Morishima K, Biochem. Biophys. Res. Commun., 427(2), 379, 2012
  25. Effenhauser CS, Bruln GJM, Paulus A, Ehrat M, Anal. Chem., 69, 3451, 1997
  26. Wilkes JS, in Ionic Liquids in Synthesis, Ed. Wasserscheid P, Welton T, WILEY-VCH Verlag & Co., KGaA, 1 (2002).
  27. Oldham WJ, in Ionic Liquids: Industrial Applications to Green Chemistry, Ed. Rogers RD, Seddon KR, Oxford University, Press, 188 (2003).
  28. Martino W, de la Mora JF, Yoshida Y, Saito G, Wilkes J, Green Chem., 8, 390, 2006
  29. Choi CH, Prasad N, Lee NR, Lee CS, Biochip J., 2, 27, 2008
  30. Fitchett BD, Rollins JB, Conboy JC, Langmuir, 21(26), 12179, 2005
  31. Lepercq-Bost E, Giorgi ML, Isambert A, Arnaud C, J. Membr. Sci., 314(1-2), 76, 2008
  32. van der Graaf S, Steegmans MLJ, van der Sman RGM, Schroen CGPH, Boom RM, Colloids Surf. A: Physicochem. Eng. Asp., 266, 106, 2005