Issue
Korean Journal of Chemical Engineering,
Vol.33, No.1, 33-45, 2016
Estimation of local concentration from measurements of stochastic adsorption dynamics using carbon nanotube-based sensors
This paper proposes a maximum likelihood estimation (MLE) method for estimating time varying local concentration of the target molecule proximate to the sensor from the time profile of monomolecular adsorption and desorption on the surface of the sensor at nanoscale. Recently, several carbon nanotube sensors have been developed that can selectively detect target molecules at a trace concentration level. These sensors use light intensity changes mediated by adsorption or desorption phenomena on their surfaces. The molecular events occurring at trace concentration levels are inherently stochastic, posing a challenge for optimal estimation. The stochastic behavior is modeled by the chemical master equation (CME), composed of a set of ordinary differential equations describing the time evolution of probabilities for the possible adsorption states. Given the significant stochastic nature of the underlying phenomena, rigorous stochastic estimation based on the CME should lead to an improved accuracy over than deterministic estimation formulated based on the continuum model. Motivated by this expectation, we formulate the MLE based on an analytical solution of the relevant CME, both for the constant and the time-varying local concentrations, with the objective of estimating the analyte concentration field in real time from the adsorption readings of the sensor array. The performances of the MLE and the deterministic least squares are compared using data generated by kinetic Monte Carlo (KMC) simulations of the stochastic process. Some future challenges are described for estimating and controlling the concentration field in a distributed domain using the sensor technology
[References]
  1. Umh HN, Shin HH, Yi J, Kim Y, Korean J. Chem. Eng., 32(2), 299, 2015
  2. Ahmed SR, Koh K, Park EY, Lee J, Korean J. Chem. Eng., 30(10), 1825, 2013
  3. Saito S, Zettl A, Carbon Nanotubes: Quantum Cylinders of Graphene, Elsevier (2008).
  4. Boghossian AA, Zhang J, Barone PW, Reuel NF, Kim JH, Heller DA, Ahn JH, Hilmer AJ, Rwei A, Arkalgud JR, ChemSusChem, 4, 848, 2011
  5. Cognet L, Tsyboulski DA, Rocha JDR, Doyle CD, Tour JM, Weisman RB, Science, 316, 1465, 2007
  6. Barone PW, Baik S, Heller DA, Strano MS, Nat. Mater., 4(1), 86, 2005
  7. Heller DA, Jeng ES, Yeung TK, Martinez BM, Moll AE, Gastala JB, Strano MS, Science, 311, 508, 2006
  8. Kim JH, Ahn JH, Barone PW, Jin H, Zhang J, Heller DA, Strano MS, Angew. Chem.-Int. Edit., 122, 1498, 2010
  9. Jin H, Heller DA, Kalbacova M, Kim JH, Zhang JQ, Boghossian AA, Maheshri N, Strano MS, Nat. Nanotechnol., 5(4), 302, 2010
  10. Jin H, Heller DA, Kim JH, Strano MS, Nano Lett., 8, 4299, 2008
  11. Zhang J, Boghossian AA, Barone PW, Rwei A, Kim JH, Lin D, Heller DA, Hilmer AJ, Nair N, Reue NF, J. Am. Chem. Soc., 133, 567, 2010
  12. Kim JH, Heller DA, Jin H, Barone PW, Song C, Zhang J, Trudel LJ, Wogan GN, Tannenbaum SR, Strano MS, Nature Chem., 1, 473, 2009
  13. Fichthorn KA, Weinberg WH, J. Chem. Phys., 95, 1090, 1991
  14. Jahnke T, Huisinga W, J. Math. Biol., 54, 1, 2007
  15. Boghossian AA, Zhang J, Le Floch-Yin FT, Ulissi ZW, Bojo P, Han JH, Kim JH, Arkalgud JR, Reuel NF, Braatz RD, J. Chem. Phys., 135, 084124, 2011
  16. Ulissi ZW, Zhang J, Boghossian AA, Reuel NF, Shimizu SF, Braatz RD, Strano MS, J. Phys. Chem. Lett., 2, 1690, 2011
  17. Ulissi ZW, Strano MS, Braatz RD, Comput. Chem. Eng., 51, 149, 2013
  18. Kishida M, Braatz RD, Optimal spatial field control of distributed parameter systems, American Control Conference 2009, IEEE, 32 (2009).
  19. Lehmann EL, Romano JP, Testing statistical hypotheses, Springer (2006).
  20. Jang H, Lee JH, Braatzf RD, Kim KKK, Comput. Chem. Eng., 63, 159, 2013
  21. Kishida M, Pack DW, Braatz RD, State-constrained optimal spatial field control for controlled release in tissue engineering, American Control Conference 2010, IEEE, 4361 (2010).