Issue
Korean Journal of Chemical Engineering,
Vol.32, No.8, 1498-1514, 2015
Lattice Boltzmann analysis of effect of heating location and Rayleigh number on natural convection in partially heated open ended cavity
Natural convection characteristics of a partially heated open ended square cavity have been investigated numerically by using an in-house computational flow solver based on the passive scalar thermal lattice Boltzmann method (PS-TLBM) with D2Q9 (two-dimensional and nine-velocity link) lattice model. The partial part of left wall of the cavity is heated isothermally at either of the three different (bottom, middle and top) locations for the fixed heating length as half of characteristic length (H/2) while the right wall is open to the ambient conditions. The other parts of the cavity are thermally isolated. In particular, the influences of partial heating locations and Rayleigh number (103≤Ra≤106) in the laminar zone on the local and global natural convection characteristics (such as streamline, vorticity and isotherm contours; centerline variations of velocity and temperature; and local and average Nusselt numbers) have been presented and discussed for the fixed value of the Prandtl number (Pr=0.71). The streamline patterns show qualitatively similar nature for all the three heating cases and Rayleigh numbers, except the change in the recirculation zone which is found to be largest for middle heating case. Isotherm patterns are shifted towards a partially heated wall on increasing Rayleigh number and/or shifting of heating location from bottom to top. Both the local and average Nusselt numbers, as anticipated, shown proportional increase with Rayleigh number. The cavity with middle heating location shown higher heat transfer rate than that for the top and bottom heating cases. Finally, the functional dependence of the average Nusselt number on flow governing parameters is also presented as a closure relationship for the best possible utilization in engineering practices and design.
[References]
  1. Jmai R, Ben-beya B, Lili T, Superlattices Microstruct., 53, 130, 2013
  2. Gangawane KM, Bharti RP, Kumar S, Thermal lattice Boltzmann methods: a review, in: Conference on Technological Advancements in Chemical and Environmental Engineering (TACEE-2012), Paper no. O270, BITS Pilani, Pilani, India, March 23-24 (2012).
  3. Gangawane KM, Bharti RP, Kumar S, Thermal analysis of natural convection in dierentially heated shallow cavities at dierent Rayleigh numbers by lattice Boltzmann approximation, in: Proceedings of 65th Annual Session of IIChE (CHEMCON-2012), International Conference on Sustainable Technologies for Energy and Environment in Process Industries and Indo-US Joint International Conference on Energy and Environment, Paper no. P-311, NIT Jalandhar, Jalandhar, India, December 27-30 (2012).
  4. Gangawane KM, Bharti RP, Kumar S, Lattice Boltzmann simulation of natural convection in a partially dierentially heated square enclosure, in: Proceedings of the 22nd National and 11th ISHMT-ASME Heat and Mass Transfer Conference, Paper no. HMTC1300114, IIT Kharagpur, Kharagpur, India, December 28-31 (2013).
  5. Gangawane KM, Bharti RP, Kumar S, Can. J. Chem. Eng., 93(4), 766, 2015
  6. Spall RE, Int. J. Heat Mass Transf., 23, 115, 1996
  7. Bilgen E, Muftuoglu A, Int. Commun. Heat Mass Transf., 35, 545, 2008
  8. Hsu TH, Wang SG, Numer. Heat Transf. A-Appl., 38, 627, 2000
  9. Du SQ, Bilgen E, Vasseur P, Int. J. Heat Mass Transf., 34, 263, 1998
  10. Hsiao KL, Appl. Therm. Eng., 27, 1895, 2007
  11. Habib S, Surry C, Belghith A, High Temperature Material Process, 9, 483, 2005
  12. Hobbi A, Siddiqui K, Int. J. Heat Mass Transf., 52(19-20), 4650, 2009
  13. Cengel YA, Afshin JG, Heat and Mass Transfer, McGraw Hill Higher Education, 2nd Ed. (2011).
  14. Valencia A, Frederick RL, Int. J. Heat Mass Transf., 32(8), 1567, 1989
  15. Begum R, Basit MA, Eur. J. Sci. Res., 22, 216, 2008
  16. Xi H, Peng G, Chou SH, Phys. Rev. E, 59, 6202, 1999
  17. Dong Y, Zhang J, Yan G, Appl. Math. Model., 34, 481, 2010
  18. Alexander FJ, Chen S, Sterling JD, Phys. Rev. E, 47, R2249, 1993
  19. He X, Chen S, Doolen GD, J. Comput. Phys., 146, 282, 1998
  20. Peng Y, Shu C, Chew Y, Phys. Rev. E, 68(2), 026701, 2003
  21. Kuznik F, Vareilles J, Rusaouen G, Krauss G, Int. J. Heat Fluid Flow, 28, 862, 2007
  22. Guo Z, Zheng C, Shi B, Zhao TS, Phys. Rev. E, 75, 1, 2007
  23. Chen S, Tian Z, Int. J. Heat Fluid Flow, 31, 227, 2010
  24. Shin CB, Economou DJ, Int. Commun. Heat Mass Transf., 33(10), 2191, 1990
  25. Vafai K, Ettefagh J, Int. Commun. Heat Mass Transf., 33(10), 2329, 1990
  26. Balaji C, Venkateshan SP, Int. J. Heat Fluid Flow, 15(4), 317, 1994
  27. Mohamad AA, Numer. Heat Transf. A-Appl., 27, 705, 1995
  28. Angirasa D, Eggels JGM, Nieuwstadt FTM, Numer. Heat Transf. A-Appl., 28, 755, 1995
  29. Khanafer K, Vafai K, Int. J. Heat Mass Transf., 43(22), 4087, 2000
  30. Khanafer K, Vafai K, Int. J. Heat Mass Transf., 45(12), 2527, 2002
  31. Polat O, Bilgen E, Int. J. Therm. Sci., 41, 360, 2002
  32. Hinojosa JF, Cabanillas RE, Alvarez G, Estrada CE, Int. Commun. Heat Mass Transf., 32(9), 1184, 2005
  33. Bilgen E, Oztop H, Int. J. Heat Mass Transf., 48(8), 1470, 2005
  34. Mohamad AA, El-Ganaoui M, Bennacer R, Int. J. Therm, 48(10), 1870, 2009
  35. Sajjadi H, Gorji M, Kefayati GR, Ganji DD, Shayannia M, World Academy of Science, Engineering and Technology, 55, 265, 2010
  36. Prakash M, Kedare SB, Nayak JK, Int. J. Therm. Sci., 51, 23, 2012
  37. Chung S, Vafai K, Int. J. Heat Mass Transf., 53(13-14), 2703, 2010
  38. Haghshenas A, Nasr MR, Rahimian MH, Int. J. Heat Mass Transf., 53, 1513, 2010
  39. Kefayati GR, Int. Commun. Heat Mass Transf., 40, 67, 2013
  40. Sankar M, Bhuvaneswari M, Sivasankaran S, Do Y, Int. J. Heat Mass Transf., 54(25-26), 5173, 2011
  41. Rahman MM, Oztop HF, Saidur R, Mekhilef S, Al-Salem K, Comput. Fluids, 79, 53, 2013
  42. Bird RB, Stewart WE, Lightfoot EN, Transport Phenomena, John Wiley & Sons, Inc., 2nd Ed. (2006).
  43. Chhabra RP, Richardson JF, Non-Newtonian Flow and Applied Rheology, Butterworth-Heinemann, Oxford, UK, 2nd Ed. (2008).
  44. Deen WM, Analysis of Transport Phenomena, Oxford University Press, 2nd Ed. (2013).
  45. Srinivas AR, Bharti RP, Chhabra RP, Ind. Eng. Chem. Res., 48(21), 9735, 2009
  46. Bejan A, Convective Heat Transfer, John Wiley & Sons, Inc., 3rd Ed. (2004).
  47. Fattahi E, Farhadi M, Sedighi K, Int. J. Therm. Sci., 49, 2353, 2010
  48. Fattahi E, Farhadi M, Sedighi K, Nemati H, Int. J. Therm. Sci., 52, 137, 2012
  49. Bharti RP, Chhabra RP, Eswaran V, Heat Mass Transf., 43(7), 639, 2007
  50. Bharti RP, Chhabra RP, Eswaran V, Int. J. Heat Mass Transf., 50(5-6), 977, 2007
  51. Bharti RP, Chhabra RP, Eswaran V, Chem. Eng. Sci., 62(7), 4729, 2007
  52. Bharti RP, Sivakumar P, Chhabra P, Int. J. Heat Mass Transf., 51(7-8), 1838, 2008
  53. Chan YL, Tien CL, Numer. Heat Transf. A-Appl., 8, 65, 1985
  54. Chen S, Doolen GD, Ann. Rev. Fluid Mechanics, 30, 329, 1998
  55. Peng Y, Shu C, Chew Y, J. Comput. Phys., 193(1), 260, 2004
  56. Zou Q, He X, Phys. Fluids, 9, 1591, 1997
  57. He Y, Qi C, Hu Y, Qin B, Li F, Ding Y, Nanoscale Res. Lett., 6, 1, 2011
  58. Dellar PJ, Nanoscale Res. Lett., 190, 351, 2013
  59. Bharti RP, Chhabra RP, Eswaran V, Can. J. Chem. Eng., 84(4), 406, 2006
  60. Sivakumar P, Bharti RP, Chhabra RP, Chem. Eng. Sci., 61(18), 6035, 2006
  61. Sivakumar P, Bharti RP, Chhabra RP, Chem. Eng. Sci., 62(6), 1682, 2007
  62. Bharti RP, Chhabra RP, Ind. Eng. Chem. Res., 46(11), 3820, 2007
  63. Patil RC, Bharti RP, Chhabra RP, Ind. Eng. Chem. Res., 47(5), 1660, 2008
  64. Patil RC, Bharti RP, Chhabra RP, Ind. Eng. Chem. Res., 47(23), 9141, 2008
  65. Tian FB, Bharti RP, Xu YQ, Comput. Mech., 53(2), 257, 2014
  66. Gangawane KM, Bharti RP, Kumar S, J. Taiwan Inst. Chem. Eng., 10.1016/j.jtice.2014.11.020, 2015
  67. Stephan K, Abdelsalam M, Int. J. Heat Mass Transf., 23, 73, 1980