Issue
Korean Journal of Chemical Engineering,
Vol.32, No.8, 1455-1476, 2015
Reviews on drag reducing polymers
Polymers are effective drag reducers owing to their ability to suppress the formation of turbulent eddies at low concentrations. Existing drag reduction methods can be generally classified into additive and non-additive techniques. The polymer additive based method is categorized under additive techniques. Other drag reducing additives are fibers and surfactants. Non-additive techniques are associated with the applications of different types of surfaces: riblets, dimples, oscillating walls, compliant surfaces and microbubbles. This review focuses on experimental and computational fluid dynamics (CFD) modeling studies on polymer-induced drag reduction in turbulent regimes. Other drag reduction methods are briefly addressed and compared to polymer-induced drag reduction. This paper also reports on the effects of polymer additives on the heat transfer performances in laminar regime. Knowledge gaps and potential research areas are identified. It is envisaged that polymer additives may be a promising solution in addressing the current limitations of nanofluid heat transfer applications.
[References]
  1. Brostow W, J. Ind. Eng. Chem., 14(4), 409, 2008
  2. Toms BA, Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers, Proceedings of the 1st International Congress on Rheology (1949).
  3. Burger ED, Munk WR, Wahl HA, J. Pet. Technol., 34, 377, 1982
  4. Liaw GC, Zakin JL, Patterson GK, AIChE J., 17, 391, 1971
  5. Peyser P, J. Appl. Polym. Sci., 17, 421, 1973
  6. Kostic M, Int. J. Heat Mass Transf., 37(S), 133, 1994
  7. Berman NS, Annu. Rev. Fluid Mech., 10, 47, 1978
  8. Oliver DR, Karim RB, Can. J. Chem. Eng., 49, 236, 1971
  9. Mena B, Best G, Bautista P, Sanchez T, Rheol. Acta, 17, 454, 1978
  10. Hartnett JP, Kostic M, Int. J. Heat Mass Transf., 28, 1147, 1985
  11. Gupta MK, Metzner AB, Hartnett JP, Int. J. Heat Mass Transf., 10, 1211, 1967
  12. Virk PS, Merrill EW, Mickley HS, Smith KA, Mollo-Christensen EL, J. Fluid Mech., 30, 305, 1967
  13. McComb WD, Rabie LH, AIChE J., 28, 547, 1982
  14. Sellin RHJ, Ollis M, Ind. Eng. Chem. Prod. Res. Dev., 22, 445, 1983
  15. Abubakar A, Al-Wahaibi T, Al-Wahaibi Y, Al-Hashmi AR, Al-Ajmi A, Chem. Eng. Res. Des., 92(11), 2153, 2014
  16. Hartnett JP, J. Heat Transf. -Trans. ASME, 114, 296, 1992
  17. Cho YI, Harnett JP, Non-Newtonian fluids in circular pipe flow, in Advances in Heat Transfer, Harnett JP, Thomas FI Eds., Elsevier, USA, 59 (1982).
  18. Kwack EY, Hartnett JP, Cho YI, Warme - und Stoffubertragung, 16, 35, 1982
  19. Kwack EY, Hartnett JP, Int. Commun. Heat Mass Transf., 10, 451, 1983
  20. Kim NJ, Kim S, Lim SH, Chen K, Chun W, Int. Commun. Heat Mass Transf., 36, 1014, 2009
  21. Lumley JL, Annu. Rev. Fluid Mech., 1, 367, 1969
  22. Fleming DJ, Capillary Rheometry, Polymer Rheology’ 99 Conference: Approach to Quality Control for the Plastics and Rubber Industries (1999).
  23. Dimitropoulos CD, Sureshkumar R, Beris AN, J. Non-Newton. Fluid Mech., 79(2-3), 433, 1998
  24. Bonn D, Yacine A, Christian W, Stephane D, Olivier C, J. Phys. Condens. Matter, 17, S1195, 2005
  25. Gillissen JJJ, Phys. Rev. E, 78, 046311, 2008
  26. Toonder JMJD, Hulsen MA, Kuiken GDC, Nieuwstadt FTM, J. Fluid Mech., 337, 193, 1997
  27. Min T, Yoo JY, Choi H, Joseph DD, J. Fluid Mech., 486, 213, 2003
  28. Tung TT, Ng KS, Hartnett JP, Lett. Heat. Mass Transf., 5, 59, 1978
  29. Virk PS, Mickley HS, Smith KA, J. Appl. Mech., 37, 488, 1970
  30. Poreh M, Paz U, Int. J. Heat Mass Transf., 11, 805, 1968
  31. Hartnett JP, Kwack EY, Int. J. Thermophys., 7, 53, 1986
  32. Debrule PM, Sabersky RH, Int. J. Heat Mass Transf., 17, 529, 1974
  33. Singh RP, Drag reduction, in Encyclopedia of Polymer Science and Technology, Kroschwitz JI Ed., John Wiley & Sons, Inc., New Jersey, 519 (2002).
  34. Sellin RHJ, Hoyt JW, Scrivener O, J. Hydraulic Res., 20, 29, 1982
  35. Singh RP, Drag reduction, in Properties and Behavior of Polymers, Bailey J, Seidel A, Arndt E, Thomas S, Parrish K, Gonzalez D Eds., John Wiley & Sons, Inc., New Jersey, 254 (2011).
  36. Toh KH, Ghajar AJ, Int. J. Heat Mass Transf., 31, 1261, 1988
  37. Gao SX, Hartnett JP, Int. Commun. Heat Mass Transf., 19, 673, 1992
  38. Shin SY, Cho YI, Int. J. Heat Mass Transf., 37(S), 19, 1994
  39. Hartnett JP, Kostic M, Heat transfer to Newtonian and non-Newtonian fluids in rectangular ducts, in Advances in Heat Transfer, Hartnett JP, Irvine JTF Eds., Academic Press, Inc., USA, 247 (1989).
  40. Gingrich WK, Cho YI, Shyy W, Int. J. Heat Mass Transf., 35, 2823, 1992
  41. Escudier P, Smith S, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 457, 911 (2001).
  42. Kostic M, Hartnett JP, Int. Commun. Heat Mass Transf., 12, 483, 1985
  43. Yang KS, Choi HJ, Kim CB, Kim IS, Jhon MS, Korean J. Chem. Eng., 11(1), 8, 1994
  44. Kim CA, Jo DS, Choi HJ, Kim CB, Jhon MS, Polym. Test, 20, 43, 2001
  45. Choi HJ, Kim CA, Jhon MS, Polymer, 40(16), 4527, 1999
  46. Kim CA, Kim JT, Lee K, Choi HJ, Jhon MS, Polymer, 41(21), 7611, 2000
  47. Lim ST, Choi HJ, Lee SY, So JS, Chan CK, Macromolecules, 36(14), 5348, 2003
  48. Lim ST, Choi HJ, Chan CK, Macromol. Rapid Commun., 26(15), 1237, 2005
  49. Kim JT, Kim CA, Zhang K, Jang CH, Choi HJ, Colloids Surf. A: Physicochem. Eng. Asp., 391, 125, 2011
  50. Sohn JI, Kim CA, Choi HJ, Jhon MS, Carbohydr. Polym., 45, 61, 2001
  51. Kim CA, Lim ST, Choi HJ, Sohn JI, Jhon MS, J. Appl. Polym. Sci., 83(13), 2938, 2002
  52. Matras Z, Malcher T, Gzyl-Malcher B, Thin Solid Films, 516(24), 8848, 2008
  53. Mohsenipour AA, Pal R, Can. J. Chem. Eng., 91(1), 190, 2013
  54. Ptasinski PK, Boersma BJ, Nieuwstadt FTM, Hulsen MA, Van Den Brule BHAA, Hunt JCR, J. Fluid Mech., 490, 251, 2003
  55. Terrapon VE, Lagrangian simulations of turbulent drag reduction by a dilute solution of polymers in a channel flow, Ph.D. Thesis, Stanford University (2005).
  56. Dhotre MT, Ekambara K, Joshi JB, J. Chem. Eng. Jpn., 40(4), 304, 2007
  57. Escudier MP, Presti F, Smith S, J. Non-Newton. Fluid Mech., 81, 197, 1998
  58. Presti F, Investigation of transitional and turbulent pipe flow of non-Newtonian fluids, Ph.D. Thesis, University of Liverpool, UK (2000).
  59. Naccache MF, Mendes PRS, Int. J. Heat Fluid Flow, 17, 613, 1996
  60. Dean B, Bhushan B, Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci., 368, 4775, 2010
  61. Abdulbari HA, Yunus RM, Abdurahman NH, Charles A, J. Ind. Eng. Chem., 19(1), 27, 2013
  62. Garcia-Mayoral R, Jimenez J, Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci., 369, 1412, 2011
  63. Huang JB, Ho CM, Microriblets for drag reduction, Smart Structures and Materials 1995: Smart Electronics (1995).
  64. Walsh MJ, Drag characteristics of v-groove and transverse curvature riblets, in Viscous Flow Drag Reduction, G. R. Hough Ed., American Institute of Aeronautics and Astronautics, Washington, 168 (1980).
  65. Walsh MJ, Riblets, in Viscous Drag Reduction in Boundary Layers, Bushnell DM, Hefner JN Eds., American Institute of Aeronautics and Astronautics, Washington, 203 (1990).
  66. Liu CK, Klein S, Johnston J, An experimental study of turbulent boundary layer on rough walls, Stanford University, Department of Mechanical Engineering (1966).
  67. Choi H, Moin P, Kim J, Phys. Fluids A: Fluid Dynamics, 3, 1892, 1991
  68. Chu DC, Karniadakis GE, J. Fluid Mech., 250, 1, 1993
  69. Choi KS, J. Fluid Mech., 208, 417, 1989
  70. Warsop C, Turbulent drag reduction methods - Current status and prospects for turbulent flow control, in Aerodynamic Drag Reduction Technologies: Proceedings of the CEAS/DragNet European Drag Reduction Conference, Thiede P Ed., Springer, Germany, 269 (2001).
  71. Choi H, Moin P, Kim J, J. Fluid Mech., 255, 503, 1993
  72. Baron A, Quadrio M, Vigevano L, Int. J. Heat Fluid Flow, 14, 324, 1993
  73. Bacher E, Smith C, A combined visualization-anemometry study of the turbulent drag reducing mechanisms of triangular microgroove surface modifications, American Institute of Aeronautics and Astronautics, Shear Flow Control Conference (1985).
  74. Alekseev VV, Gachechiladze IA, Kiknadze GI, Oleinikov VG, Tornado-like energy transer on three-dimensional concavities of reliefs-structure of self-organizing flow, their visualization, and surface streamlining mechanicms, in Transactions of the 2nd Russian Nat. Conf. of Heat Transfer, vol. 6, Heat Transfer Intensification Radiation and Complex Heat Transfer, Publishing House of Moscow Energy Institute (MEI), Moscow, 33 (1998).
  75. Aoyama S, Golf ball dimple pattern, US Patent, 5,957,786 (1999).
  76. Kasashima A, Golf ball, US Patent, 6,761,647 (2004).
  77. Veldhuis LLM, Vervoort E, Drag effect of a dented surface in a turbulent flow, Proceedings of the 27th AIAA Applied Aerodynamics Conference (2009).
  78. Lienhart H, Breuer M, Koksoy C, Int. J. Heat Fluid Flow, 29, 783, 2008
  79. Kim HM, Moon MA, Kim KY, Energy, 36(5), 3419, 2011
  80. Silva C, Marotta E, Fletcher L, J. Electronic Packaging, 129, 157, 2006
  81. Burgess NK, Oliveira MM, Ligrani PM, J. Heat Transf. -Trans. ASME, 125, 11, 2003
  82. Samad A, Lee KD, Kim KY, Heat Mass Transf., 45, 207, 2008
  83. Trujillo SM, David B, Kenneth B, Steven T, David B, Kenneth B, Turbulent boundary layer drag reduction using an oscillating wall, 4th Shear Flow Control Conference (1997).
  84. Fang J, Lu L, Shao L, Sci. in China Series G: Phys. Mech. and Astronomy, 52, 1233, 2009
  85. Baron A, Quadrio M, Appl. Sci. Res., 55, 311, 1996
  86. Laadhari F, Skandaji L, Morel R, Phys. Fluids, 6, 3218, 1994
  87. Choi KS, Debisschop JR, Clayton BR, AIAA J., 36, 1157, 1998
  88. Choi KS, Clayton BR, Int. J. Heat Fluid Flow, 22, 1, 2001
  89. Choi KS, Phys. Fluids, 14, 2530, 2002
  90. Ricco P, Quadrio M, Int. J. Heat Fluid Flow, 29, 891, 2008
  91. Jung WJ, Mangiavacchi N, Akhavan R, Phys. Fluids A:Fluid Dynamics, 4, 1605, 1992
  92. Quadrio M, Ricco P, J. Fluid Mech., 521, 251, 2004
  93. Choi KS, Graham M, Phys. Fluids, 10, 7, 1998
  94. Kramer MO, J. American Society for Naval Engineers, 72, 25, 1960
  95. Puryear FW, Boundary layer control: Drag reduction by use of compliant coatings, David Taylor Model Basin Report No. 1668, Naval Surface Warfare Center (1962).
  96. Nisewanger CR, Flow noise and drag measurements of vehicle with compliant coating, Report No. 8518 NOTS No. TP-3510, US Naval Ordnance Test Station (1964).
  97. Ritter H, Messum L, Water tunnel measurements of turbulent skin friction on six different compliant surfaces of 1 ft length, Report No. ARL/N4/GHY/9/7, ARL/G/N9, British Admiralty Research Laboratory (1964).
  98. Ritter H, Porteous J, Water tunnel measurements of skin friction on a compliant coating, Report No. ARL/N3/G/HY/9/7, British Admiralty Research Laboratory (1964).
  99. Carpenter PW, Garrad AD, J. Fluid Mech., 155, 465, 1985
  100. Benjamin TB, J. Fluid Mech., 9, 513, 1960
  101. Betchov R, J. Ship Res., 4, 37, 1960
  102. Landahl MT, J. Fluid Mech., 13, 609, 1962
  103. Kulik VM, Poguda IS, Semenov BN, Experimental investigation of one-layer viscoelastic coatings action on turbulent friction and wall pressure pulsations, in Recent Developments in Turbulence Management, K. S. Choi Ed., Kluwer Academic Publishers, Dordrecht, Netherlands, 263 (1991).
  104. Semenov BN, On conditions of modelling and choice of viscoelastic coatings for drag reduction, in Recent Developments in Turbulence Management, Choi KS Ed., Kluwer Academic Publishers, Dordrecht, Netherlands, 241 (1991).
  105. Choi KS, Yang X, Clayton BR, Glover EJ, Atlar M, Semenov BN, Kulik VM, Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci., 453, 2229, 1997
  106. Endo T, Himeno R, J. Turbulence, 3, 7, 2002
  107. Xu S, Rempfer D, Lumley J, J. Fluid Mech., 478, 11, 2003
  108. Kawamura T, Moriguchi Y, Kato H, Kakugawa A, Kodama Y, Effect of bubble size on the microbubble drag reduction of a turbulent boundary layer, ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference (2003).
  109. Afiza E, Okanaga H, Effect of skin friction reduction by microbubbles in pipe flow, Proceedings of the School of Engineering of Tokai University (2012).
  110. Kodama Y, Kakugawa A, Takahashi T, Kawashima H, Int. J. Heat Fluid Flow, 21, 582, 2000
  111. Kato H, Iwashina T, Miyanaga M, Yamaguchi H, J. Marine Sci. Technol., 4, 155, 1999
  112. McCormick ME, Bhattacharyya R, Naval Engineers J., 85, 11, 1973
  113. Merkle CL, Deutsch S, Appl. Mech. Rev., 45, 103, 1992
  114. Madavan NK, Deutsch S, Merkle CL, J. Fluids Eng., 107, 370, 1985
  115. Lu X, Kato H, Kawamura T, Turbulent drag reduction effect by hydrogen and oxygen microbubbles made by electrolysis, ASME 2006 2nd Joint US-European Fluids Engineering Summer Meeting Collocated With the 14th International Conference on Nuclear Engineering (2006).
  116. Wu SJ, Hsu CH, Lin TT, Ocean Eng., 34, 83, 2007
  117. Xu J, Maxey MR, Karniadakis GE, J. Fluid Mech., 468, 271, 2002
  118. Kodama Y, Effect microbubbles distribution on skin friction reduction, Proceedings of the International Symposium on Seawater Drag Reduction (1998).
  119. Wu SJ, Ouyang K, Shiah SW, Ocean Eng., 35, 856, 2008
  120. Forrest F, Grierson GA, Paper Trade J., 92, 39, 1931
  121. You ZJ, Lin JZ, Shao XM, Zhang WF, Chin. J. Chem. Eng., 12(3), 319, 2004
  122. Lee PFW, Duffy GG, AIChE J., 22, 750, 1976
  123. Radin I, Solid fluid drag reduction, Ph.D. Thesis, University of Missouri - Rolla (1974).
  124. Radin I, Zakin JL, Patterson GK, AIChE J., 21, 358, 1975
  125. Vaseleski RC, Metzner AB, AIChE J., 20, 301, 1974
  126. Moyls AL, Sabersky RH, Int. J. Heat Mass Transf., 21, 7, 1978
  127. Paschkewitz JS, Dubief YV, Dimitropoulos CD, Shaqfeh ESG, Moin P, J. Fluid Mech., 518, 281, 2004
  128. Mysels KJ, Flow of thickened fluids, US Patent, 2,492,173 (1949).
  129. Wang Y, Yu B, Zakin JL, Shi H, Adv. Mech. Eng., 2011, 1, 2011
  130. Tamano S, Itoh M, Kato K, Yokota K, Phys. Fluids, 22, 055102, 2010
  131. Radin I, Zakin JL, Patterson GK, Exploratory drag reduction studies in non-polar soap systems, in Viscous Drag Reduction, Wells CS Ed., Springer USA, 213 (1969).
  132. Rozanski J, J. Non-Newton. Fluid Mech., 166(5-6), 279, 2011
  133. Wei JJ, Kawaguchi Y, Li FC, Yu B, Zakin JL, Hart DJ, Zhang Y, Int. J. Heat Mass Transf., 52(15-16), 3547, 2009
  134. Krope A, Lipus LC, Appl. Therm. Eng., 30, 833, 2010
  135. Yu B, Kawaguchi Y, Int. J. Heat Fluid Flow, 24, 491, 2003
  136. Yu B, Li F, Kawaguchi Y, Int. J. Heat Fluid Flow, 25, 961, 2004
  137. Bewersdorff HW, Ohlendorf D, Colloid Polym. Sci., 266, 941, 1988
  138. HU YT, MATTHYS EF, Rheol. Acta, 34(5), 450, 1995
  139. Kim C, Park SR, Yoon HK, Haw JR, J. Chem. Eng. Jpn., 37(11), 1326, 2004
  140. Zhang H, Wang D, Chen H, Arch. Appl. Mech., 79, 773, 2009
  141. Qi YY, Kawaguchi YS, Lin ZQ, Ewing M, Christensen RN, Zakin JL, Int. J. Heat Mass Transf., 44(8), 1495, 2001
  142. Cheng L, Liu L, Mewes D, Drag reduction with surfactants and polymeric additives in multiphase flow, in Advances in Multiphase Multiphase Flow and Heat Transfer, Cheng L, Mewes D Eds., Bentham Science Publishers, USA, 149 (2012).
  143. Kale DD, Metzner AB, AIChE J., 22, 669, 1976
  144. Chou LC, Drag reducing cationic surfactant solutions for district heating and cooling systems, Ph.D. Thesis, The Ohio State University (1991).
  145. Lioumbas JS, Mouza AA, Paras SV, Chem. Eng. Sci., 61(14), 4605, 2006
  146. Wilkens RJ, Thomas DK, Int. J. Multiph. Flow, 33(2), 134, 2007
  147. Ohlendorf D, Interthal W, Hoffmann H, Rheol. Acta, 25, 468, 1986
  148. Hellsten M, J. Surfactants Detergents, 5, 65, 2002
  149. Chang RC, Zakin JL, Influence of polymer additives on velocity and temperature fields, Proceedings of the IUTAM Symposium (1985).
  150. Cho SH, Tae CS, Zaheeruddin M, Energy Conv. Manag., 48(3), 913, 2007
  151. Hellsten M, Harwigsson I, A new biodegradable friction reducing additive (FRA) for district cooling networks, Proceedings of the 85th International District Heating and Cooling Association (IDHCA '94) (1994).
  152. Zakin JL, Lui HL, Chem. Eng. Commun., 23, 77, 1983
  153. Suali E, Hayder AB, Hasan Z, Rahman M, J. Appl. Sci., 10, 2683, 2010
  154. Savins JG, Rheol. Acta, 6, 323, 1967
  155. Zakin JL, Brosh M, Poreh A, Warshavsky M, Chem. Eng. Professional Symposium Series, 67, 85, 1971
  156. Al-Sarkhi A, Int. J. Multiph. Flow, 39, 186, 2012
  157. Al-Sarkhi A, Abu-Nada E, Batayneh M, Int. J. Multiph. Flow, 32(8), 926, 2006
  158. Al-sarkhi A, El Nakla M, Ahmed WH, Int. J. Multiph. Flow, 37(5), 501, 2011
  159. Al-Yaari M, Soleimani A, Abu-Sharkh B, Al-Mubaiyedh U, Al-Sarkhi A, Int. J. Multiph. Flow, 35(6), 516, 2009
  160. Fernandes RLJ, Jutte BM, Rodriguez MG, Int. J. Multiph. Flow, 30(9), 1051, 2004
  161. Jia N, Gourma M, Thompson CP, Chem. Eng. Sci., 66(20), 4742, 2011
  162. Mowla D, Naderi A, Chem. Eng. Sci., 61(5), 1549, 2006
  163. Xu JY, Wu YX, Li H, Guo J, Chang Y, Chem. Eng. J., 147(2-3), 235, 2009
  164. Green AE, Rivlin RS, Quarterly Appl. Mathematics, 14, 299, 1956
  165. Wheeler JA, Wissler EH, Trans. Soc. Rheol., 10, 353, 1966
  166. Townsend P, Walters K, Waterhouse WM, J. Non-Newton. Fluid Mech., 1, 107, 1976
  167. Gervang B, Larsen PS, J. Non-Newton. Fluid Mech., 39, 217, 1991
  168. Gao S, Flow and heat transfer behavior of non-Newtonian fluids in rectangular ducts, Ph.D. Thesis, University of Illinois at Chicago (1993).
  169. Xie C, Hartnett JP, Ind. Eng. Chem. Res., 31, 727, 1992
  170. Rao BK, Heat transfer to viscoelastic fluids in a 5:1 rectangular duct, Ph.D. Thesis, University of Illinois at Chicago (1988).
  171. Rao BK, Int. J. Heat Fluid Flow, 10, 334, 1989
  172. Bianco V, Manca O, Nardini S, Int. J. Therm. Sci., 50, 341, 2011
  173. Duangthongsuk W, Wongwises S, Int. J. Heat Mass Transf., 52(7-8), 2059, 2009
  174. Hwang KS, Jang SP, Choi SUS, Int. J. Heat Mass Transf., 52(1-2), 193, 2009
  175. Kim D, Kwon Y, Cho Y, Li C, Cheong S, Hwang Y, Lee J, Hong D, Moon S, Curr. Appl. Phys., 9, 119, 2009
  176. Kumar P, Ganesan R, Int. J. Civil Environ. Eng., 6, 385, 2012
  177. Lee J, Flynn RD, Goodson KE, Eaton JK, Convective heat transfer of nanofluids (DI water-Al2O3) in microchannels, ASMEJSME Thermal Engineering Summer Heat Transfer Conference (2007).
  178. Maiga SEB, Palm SJ, Nguyen CT, Roy G, Galanis N, Int. J. Heat Fluid Flow, 26, 530, 2005
  179. Rea U, McKrell T, Hu LW, Buongiorno J, Int. J. Heat Mass Transf., 52(7-8), 2042, 2009
  180. Sundar LS, Singh MK, Sousa ACM, Int. Commun. Heat Mass Transf., 44, 7, 2013
  181. Vajjha RS, Das DK, Kulkarni DP, Int. J. Heat Mass Transf., 53(21-22), 4607, 2010
  182. Heris ZS, Etemad SG, Esfahany NM, Int. Commun. Heat Mass Transf., 33, 529, 2006
  183. Chun BH, Kang HU, Kim SH, Korean J. Chem. Eng., 25(5), 966, 2008
  184. Samira P, Saeed ZH, Motahare S, Mostafa K, Korean J. Chem. Eng., 32(4), 609, 2015
  185. Liu ZH, Liao L, Int. J. Therm. Sci., 49, 2331, 2010
  186. Drzazga M, Gierczycki A, Dzido G, Lemanowicz M, Chin. J. Chem. Eng., 21(1), 104, 2013
  187. Yang JC, Li FC, Zhou WW, He YR, Jiang BC, Int. J. Heat Mass Transf., 55(11-12), 3160, 2012
  188. Li FC, Yang JC, Zhou WW, He YR, Huang YM, Jiang BC, Thermochim. Acta, 556, 47, 2013
  189. Yang JC, Li FC, He YR, Huang YM, Jiang BC, Int. J. Heat Mass Transf., 62, 303, 2013
  190. Kostic MM, Critical issues and application potentials in nanofluids research, ASME 2006 Multifunctional Nanocomposites International Conference (2006).
  191. Kostic MM, Critical issues in nanofluids research and application potentials in Nanofluids: Research, Development and Applications, Zhang Y Ed., Nova Science Pub. Inc., New York, USA, 1 (2013).
  192. Walleck CJ, Development of steady-state, parallel-plate thermal conductivity apparatus for poly-nanofluids and comparative measurements with transient HWTC apparatus, M.S. Thesis, Northern Illinois University (2009).
  193. Wang X, Xu X, Choi SUS, J. Thermophys. Heat Transf., 13, 474, 1999
  194. Nguyen CT, Desgranges F, Roy G, Galanis N, Mare T, Boucher S, Mintsa HA, Int. J. Heat Fluid Flow, 28, 1492, 2007
  195. Aladag B, Halelfadl S, Doner N, Mare T, Duret S, Estelle P, Appl. Energy, 97, 876, 2012
  196. Keblinski P, Eastman JA, Cahill DG, Mater. Today, 8, 36, 2005
  197. Mare T, Halelfadl S, Sow O, Estelle P, Duret S, Bazantay F, Exp. Therm. Fluid Sci., 35, 1535, 2011