Issue
Korean Journal of Chemical Engineering,
Vol.32, No.7, 1414-1421, 2015
Computational fluid dynamics modeling and analysis of Pd-based membrane module for CO2 capture from H2/CO2 binary gas mixture
A Pd-based membrane module for the capture of CO2 from a H2/CO2 binary gas mixture was considered, and computational fluid dynamics modeling was used to predict the module performance. Detailed models of momentum and mass balances, including local flux as a function of local linear velocity, satisfactorily described CO2 fraction in a retentate tube when compared to the experimental data under various feed flow rates. By using the model, several cases having different geometries, including the location and diameter of feed tube and the number and location of the feed and retentate tubes, were considered. Among tested geometries, the case of two feed tubes with each offset by an angle, θ, of 45o from the center line, and a feed tube diameter of 2.45mm showed the increase of the feed flow rate up to 11.80% compared to the reference case while a CO2 fraction of 90% in the retentate, which was the criterion for effective CO2 capture in the present study, was guaranteed. This would result in a plausible reduction in capital expenditures for the CO2 capture process.
[References]
  1. D’Alessandro DM, Smit B, Long JR, Angew. Chem.-Int. Edit., 49, 6058, 2010
  2. Ryi SK, Park JS, Hwang KR, Lee CB, Lee SW, Int. J. Hydrog. Energy, 36(21), 13769, 2011
  3. Hwang KR, Lee CB, Ryi SK, Park JS, Int. J. Hydrog. Energy, 37(8), 6626, 2012
  4. Hwang KR, Lee SW, Ryi SK, Kim DK, Kim TH, Park JS, Fuel Process. Technol., 106, 133, 2013
  5. Peters TA, Kaleta T, Stange M, Bredesen R, J. Membr. Sci., 383(1-2), 124, 2011
  6. Miguel CV, Mendes A, Tosti S, Madeira LM, Int. J. Hydrog. Energy, 37(17), 12680, 2012
  7. Chen WH, Syu WZ, Hung CI, Lin YL, Yang CC, Int. J. Hydrog. Energy, 38(2), 1145, 2013
  8. Ryi SK, Park JS, Kim SH, Cho SUH, Hwang KR, Kim DW, Kim HG, J. Membr. Sci., 297(1-2), 217, 2007
  9. Takaba H, Nakao S, J. Membr. Sci., 249(1-2), 83, 2005
  10. Caravella A, Barbieri G, Drioli E, Chem. Eng. Sci., 63(8), 2149, 2008
  11. Choi JH, Park MJ, Kim JN, Ko Y, Lee SH, Baek I, Korean J. Chem. Eng., 30(6), 1187, 2013
  12. Boon J, Li H, Dijkstra JW, Pieterse JAZ, Energy Procedia, 4, 699, 2011
  13. Coroneo M, Montante G, Catalano J, Paglianti A, J. Membr. Sci., 343(1-2), 34, 2009
  14. Chen WH, Syu WZ, Hung CI, Int. J. Hydrog. Energy, 36(22), 14734, 2011
  15. Brenner SC, Scott LR, The mathematical theory of finite element methods, 2nd Ed. Springer-Verlag, New York (2002).
  16. Celebi ME, Celiker F, Kingravi HA, Pattern Recognition, 44, 278, 2011
  17. Fuller EN, Schettler PD, Giddings JC, Ind. Eng. Chem., 58, 18, 1966
  18. Fuller EN, Ensley K, Giddings JC, J. Phys. Chem., 73, 3679, 1969
  19. Chen WH, Hsu PC, Int. J. Hydrog. Energy, 36(15), 9355, 2011
  20. Mardilovich IP, Engwall E, Ma YH, Desalination, 144(1-3), 85, 2002
  21. Li AW, Liang WQ, Hughes R, Thin Solid Films, 350(1-2), 106, 1999
  22. Itoh N, Xu WC, Appl. Catal. A: Gen., 107(1), 83, 1993
  23. Lin YM, Liu SL, Chuang CH, Chu YT, Catal. Today, 82(1-4), 127, 2003
  24. Chen WH, Hsu PC, Lin BJ, Int. J. Hydrog. Energy, 35(11), 5410, 2010
  25. Gao HY, Lin JYS, Li YD, Zhang BQ, J. Membr. Sci., 265(1-2), 142, 2005
  26. Roa F, Way JD, McCormick RL, Paglieri SN, Chem. Eng. J., 93(1), 11, 2003
  27. Liang WQ, Hughes R, Catal. Today, 104(2-4), 238, 2005
  28. Nair BKR, Choi J, Harold MP, J. Membr. Sci., 288(1-2), 67, 2007
  29. Wang LS, Yoshiie R, Uemiya S, J. Membr. Sci., 306(1-2), 1, 2007
  30. Wang D, Tong HH, Xu HY, Matsumura Y, Catal. Today, 93-95, 689, 2004
  31. Tong JH, Matsumura Y, Suda H, Haraya K, Sep. Purif. Technol., 46(1-2), 1, 2005
  32. Dittmeyer R, Hollein V, Daub K, J. Mol. Catal. A-Chem., 173(1-2), 135, 2001
  33. Bosko ML, Yepes D, Irusta S, Eloy P, Ruiz P, Lombardo EA, Cornaglia LM, J. Membr. Sci., 306(1-2), 56, 2007
  34. Chi YH, Yen PS, Jeng MS, Ko ST, Lee TC, Int. J. Hydrog. Energy, 35(12), 6303, 2010