Issue
Korean Journal of Chemical Engineering,
Vol.32, No.7, 1405-1413, 2015
Adsorption equilibrium, kinetics and mechanism studies of mercury on coal-fired fly ash
Fly ash samples were collected from the electrostatic precipitator (ESP) of a 600MW pulverized coal boiler firing Zhungeer bituminous coal in China to evaluate and explore its mercury adsorption capacity and mechanism. Samples characterization was conducted to feature their morphologies correlated to mercury content, and experimental studies on mercury adsorption in a fixed-bed apparatus were carried out to further verify its mercury adsorption availability. Based on the experimental data, adsorption isotherm was modeled with Langmuir, Freundlich, and Temkin equations. Adsorption kinetic analysis was also performed. The results show that mercury content of fly ash samples is associated with particle size, unburned carbon content and functional groups of Al-O/Si-O or Si-O-Si/Si-O-Al tetrahedron on fly ash. Increase of initial mercury concentration is beneficial to promote mercury adsorption due to the enhancement of mercury diffusion force onto the fly ash surface, mercury intraparticle diffusion rate and initial mercury adsorption rate. Fly ash with medium size displays better mercury adsorption capacity. Smaller particle size results in higher specific surface area, but brings about low specific surface area utilization rate for mercury adsorption. Freundlich isotherm equation presents better fitting result, indicating that fly ash surface is non-uniform. Mercury adsorption on fly ash at 120 oC is mainly physisorption enhanced by chemisorption with ΔG at .36.73 kJ/mol. The pseudo-first-order kinetic model can describe the adsorption process more accurately and predict mercury adsorption capacity of fly ash preferably, showing that mercury adsorption on fly ash surface in fixed-bed is controlled dominantly by external mass transfer.
[References]
  1. Bose-O’Reilly S, Lettmeier B, Gothe RM, Beinhoff C, Siebert U, Drasch G, Environ. Res., 107, 89, 2008
  2. Hsi HC, Tsai CY, Kuo TH, Chiang CS, Bioresour. Technol., 102(16), 7470, 2011
  3. Xu WQ, Wang HR, Zhu TY, J. Environ. Sci., 25, 393, 2013
  4. Mukherjee AB, Zevenhoven R, Bhattacharya P, Sajwand KS, Kikuchie R, Resour. Conserv. Recycl., 52, 571, 2008
  5. Ren JL, Zhou JS, Luo ZY, Hu CX, Zhong YJ, Proc. Chin. Soc. Electrical Eng., 27, 48, 2007
  6. Zhuang Y, Thompson JS, Zygarlicke CJ, Pavlish JH, Fuel, 86(15), 2351, 2007
  7. Martinez AI, Deshpande BK, Fuel Process. Technol., 88(10), 982, 2007
  8. Wang YJ, Duan YF, Yang LG, Jiang YM, Wu CJ, Wang Q, Yang XH, J. Fuel Chem. Technol., 36, 23, 2008
  9. Lee SH, Rhim YJ, Cho SP, Baek JI, Fuel, 85(2), 219, 2006
  10. Ghorishi SB, Keeney RM, Serre SD, Gullett BK, Jozewicz WS, Environ. Sci. Technol., 36, 4454, 2002
  11. Zheng YJ, Jensen AD, Windelin C, Jensen F, Prog. Energy Combust. Sci., 38(5), 599, 2012
  12. Yang HQ, Xu ZH, Fan MH, Bland AE, Judkins RR, J. Hazard. Mater., 146(1-2), 1, 2007
  13. Presto AA, Granite EJ, Environ. Sci. Technol., 40, 5601, 2006
  14. Bhardwaj R, Chen X, Vidic RD, J. Air Waste Manage. Assoc., 59, 1331, 2009
  15. Hower JC, Senior CL, Suuberg EM, Hurt RH, Wilcox JL, Olson ES, Prog. Energy Combust. Sci., 36(4), 510, 2010
  16. Zhao YC, Zhang JY, Liu J, Diaz-Somoano M, Abad-Valle P, Martinez-Tarazona MR, Zheng CG, Sci. Chin. Technol. Sci., 53, 976, 2010
  17. Wang SB, Wu HW, J. Hazard. Mater., 136(3), 482, 2006
  18. Li M, Liu J, Zheng CG, Eng J, J. Eng. Thermophys., 28, 882, 2007
  19. Lopez-Anton MA, Abad-Valle P, Diaz-Somoano M, Suarez-Ruiz I, Martinez-Tarazona MR, Fuel, 88(7), 1194, 2009
  20. Skodras G, Diamantopoulou I, Pantoleontos G, Sakellaropoulos GP, J. Hazard. Mater., 158(1), 1, 2008
  21. Liu QS, Zheng T, Wang P, Jiang JP, Li N, Chem. Eng. J., 157(2-3), 348, 2010
  22. Goodarzi F, Fuel, 85(10-11), 1418, 2006
  23. Lu YQ, Rostam-Abadi M, Chang R, Richardson C, Paradis J, Energy Fuels, 21(4), 2112, 2007
  24. Kulaots I, Hurt RH, Suuberg EM, Fuel, 83(2), 223, 2004
  25. Li S, Cheng CM, Chen B, Cao Y, Vervynckt J, Adebambo A, Pan WP, Energy Fuels, 21(6), 3292, 2007
  26. Kostova I, Vassileva C, Dai SF, Hower JC, Apostolova D, Int. J. Coal Geology, 116-117, 227, 2013
  27. Swanepoel JC, Strydom CA, Appl. Geochem., 17, 1143, 2002
  28. Palomo A, Blanco-Varela MT, Granizo ML, Puertas F, Vazquez T, Grutzeck MW, Cem. Concr. Res., 29, 997, 1999
  29. Serre SD, Gullett BK, Ghorishi SB, J. Air Waste Manage. Assoc., 51, 733, 2001
  30. Yin Y, Zhang J, Sheng C, Zhongguo Proc. Chin. Soc. Electrical Eng., 30, 49, 2010
  31. Ozcan AS, Ozcan A, J. Colloid Interface Sci., 276(1), 39, 2004
  32. Wang SB, Li HT, J. Hazard. Mater., 126(1-3), 71, 2005