Issue
Korean Journal of Chemical Engineering,
Vol.32, No.7, 1388-1404, 2015
Mass transfer simulation of nanofiltration membranes for electrolyte solutions through generalized Maxwell-Stefan approach
A comprehensive mathematical model is developed for simulation of ion transport through nanofiltration membranes. The model is based on the Maxwell-Stefan approach and takes into account steric, Donnan, and dielectric effects in the transport of mono and divalent ions. Theoretical ion rejection for multi-electrolyte mixtures was obtained by numerically solving the “hindered transport” based on the generalized Maxwell-Stefan equation for the flux of ions. A computer simulation has been developed to predict the transport in the range of nanofiltration, a numerical procedure developed linearization and discretization form of the governing equations, and the finite volume method was employed for the numerical solution of equations. The developed numerical method is capable of solving equations for multicomponent systems of n species no matter to what extent the system shows stiffness. The model findings were compared and verified with the experimental data from literature for two systems of Na2SO4+NaCl and MgCl2+NaCl. Comparison showed great agreement for different concentrations. As such, the model is capable of predicting the rejection of different ions at various concentrations. The advantage of such a model is saving costs as a result of minimizing the number of required experiments, while it is closer to a realistic situation since the adsorption of ions has been taken into account. Using this model, the flux of permeates and rejections of multi-component liquid feeds can be calculated as a function of membrane properties. This simulation tool attempts to fill in the gap in methods used for predicting nanofiltration and optimization of the performance of charged nanofilters through generalized Maxwell-Stefan (GMS) approach. The application of the current model may weaken the latter gap, which has arisen due to the complexity of the fundamentals of ion transport processes via this approach, and may further facilitate the industrial development of nanofiltration.
[References]
  1. Baker RW, Wijmans JG, Athayde AL, Daniels R, Ly JH, Le M, J. Membr. Sci., 137(1-2), 159, 1997
  2. Bowen WR, Mukhtar H, J. Membr. Sci., 112(2), 263, 1996
  3. Levenstein R, Hasson D, Semiat R, J. Membr. Sci., 116(1), 77, 1996
  4. Bowen WR, Cassey B, Jones P, Oatley DL, J. Membr. Sci., 242(1-2), 211, 2004
  5. Bowen WR, Welfoot JS, Williams PM, AIChE J., 48(4), 760, 2002
  6. Bowen WR, Welfoot JS, Chem. Eng. Sci., 57(7), 1121, 2002
  7. Deon S, Dutournie P, Bourseau P, AIChE J., 53(8), 1952, 2007
  8. Deon S, Dutournie P, Limousy L, Bourseau P, Sep. Purif. Technol., 69(3), 225, 2009
  9. Deon S, Escoda A, Fievet P, Chem. Eng. Sci., 66(12), 2823, 2011
  10. Fadaei F, Hoshyargar V, Shirazian S, Ashrafizadeh SN, Desalination, 284, 316, 2012
  11. Fadaei F, Shirazian S, Ashrafizadeh SN, Desalination, 281, 325, 2011
  12. Geraldes V, Alves AMB, J. Membr. Sci., 321(2), 172, 2008
  13. Mohammad AW, Hilal N, Al-Zoubi H, Darwish NA, J. Membr. Sci., 289(1-2), 40, 2007
  14. Szymczyk A, Fatin-Rouge N, Fievet P, Ramseyer C, Vidonne A, J. Membr. Sci., 287(1), 102, 2007
  15. Krishna R, Chem. Eng. J., 35, 19, 1987
  16. Krishna R, Wesselingh JA, Chem. Eng. Sci., 52(6), 861, 1997
  17. Wesselingh JA, Krishna R, Mass transfer in multicomponent mixtures, Delft University Delft, Netherland (2000).
  18. Taylor R, Krishna R, Multicomponent mass transfer, Wiley (1993).
  19. Mitrovic J, Int. J. Heat Mass Transf., 40(10), 2373, 1997
  20. Gavalas GR, Ind. Eng. Chem. Res., 47(16), 5797, 2008
  21. Sircar S, Golden TC, Sep. Sci. Technol., 35(5), 667, 2000
  22. Krishna R, van Baten JM, Ind. Eng. Chem. Res., 45(6), 2084, 2006
  23. Do HD, Do DD, Chem. Eng. Sci., 53(6), 1239, 1998
  24. Hung HW, Lin TF, Baus C, Sacher F, Brauch HJ, Environ. Technol., 26, 1371, 2005
  25. Li S, Tuan VA, Noble RD, Falconer JL, Environ. Sci. Technol., 37, 4007, 2003
  26. Hogendoorn JA, van der Veen AJ, van der Stegen JHG, Kuipers JAM, Versteeg GF, Comput. Chem. Eng., 25(9-10), 1251, 2001
  27. Lehnert W, Meusinger J, Thom F, J. Power Sources, 87(1-2), 57, 2000
  28. Runstedtler A, Chem. Eng. Sci., 61(15), 5021, 2006
  29. Kaczmarski K, Cavazzini A, Szabelski P, Zhou D, Liu X, Guiochon G, J. Chromatogr. A, 962, 57, 2002
  30. Banat FA, Al-Rub FA, Shannag M, Heat Mass Transf., 35, 423, 1999
  31. No HC, Lim HS, Kim J, Oh C, Siefken L, Davis C, Nucl. Eng. Des., 237, 997, 2007
  32. Szymczyk A, Fievet P, Ramseyer C, Desalination, 200(1-3), 125, 2006
  33. Vezzani D, Bandini S, Desalination, 149(1-3), 477, 2002
  34. Szymczyk A, Fievet P, Desalination, 200(1-3), 122, 2006
  35. Yaroshchuk AE, Adv. Colloid Interface Sci., 85, 193, 2000
  36. Bargeman G, Vollenbroek JM, Straatsma J, Schroen CGPH, Boom RM, J. Membr. Sci., 247(1-2), 11, 2005
  37. Straatsma J, Bargeman G, van der Horst HC, Wesselingh JA, J. Membr. Sci., 198(2), 273, 2002
  38. Mehta GD, Morse TF, Mason EA, Daneshpajooh MH, J. Chem. Phys., 64, 7, 1976
  39. Noordman TR, Wesselingh JA, J. Membr. Sci., 210(2), 227, 2002
  40. Mason EA, Lonsdale HK, J. Membr. Sci., 51, 1, 1990
  41. Wesselingh JA, Vonk P, Kraaijeveld G, The Chemical Engineering J. and the Biochemical Engineering J., 57, 75 (1995).
  42. Lali AM, Khare AS, Joshi JB, Nigam KDP, Powder Technol., 57, 39, 1989
  43. Patankar S, Numerical heat transfer and fluid flow, CRC Press (1980).
  44. Deon S, Dutournie P, Fievet P, Limousy L, Bourseau P, Water Res., 47, 2260, 2013
  45. Afonso MD, de Pinho MN, Ind. Eng. Chem. Res., 37(10), 4118, 1998
  46. Bowen WR, Mohammad AW, Hilal N, J. Membr. Sci., 126(1), 91, 1997
  47. Schaep J, Vandecasteele C, Mohammad AW, Bowen WR, Sep. Purif. Technol., 22-23, 169, 2001
  48. Bandini S, Vezzani D, Chem. Eng. Sci., 58(15), 3303, 2003