Issue
Korean Journal of Chemical Engineering,
Vol.32, No.7, 1354-1360, 2015
Reduction of fatty acid flux at low temperature led to enhancement of β-carotene biosynthesis in recombinant Saccharomyces cerevisiae
Transferring the recombinant S. cerevisiae T73-63 from 30 oC to 4 oC resulted in 41.4% increment of β-carotene concentration (3.96mg/g dry cell weight) relative to that of 30 oC, which was accompanied with the accumulation of fatty acid and ergosterol. The comparisons of the transcriptional levels of mevalonate pathway genes indicated that the expressions of HMG1, ERG9, ERG19, ERG20 and IDI1 at 4 oC were all higher than those of 30 oC, respectively. This suggested that increased transcriptions of mevalonate pathway genes contribute to the improvement of β-carotene production at low temperature. We also found that supplementation of 30mg/L triclosan, an inhibitor of fatty acid synthesis, led to further 28.3% enhancement of β-carotene concentration (4.94mg/g DCW), which was 18.8% higher than that of 30 oC with the same concentration of triclosan. The higher expressional levels of HMG, ERG19 and ERG20 and the simultaneous increment of ergosterol content (17.8%) suggested that more carbon source was transferred from fatty acid synthesis to mevalonate pathway under the circumstance of appropriately blocking fatty acid synthesis at low temperature (4 oC), which resulted in a higher increment of β-carotene production compared to that of 30 oC. The results of this study collectively suggest that the combination of reducing temperature and adding fatty acid synthesis inhibitors is a potential approach to improve the production of desirable isoprenoid compounds such as carotenoids.
[References]
  1. Palozza P, Krinsky NI, Methods Enzymol., 213, 403, 1992
  2. Yoon SH, Lee SH, Das A, Ryu HK, Jang HJ, Kim JY, Oh DK, Keasling JD, Kim SW, J. Biotechnol., 140, 218, 2009
  3. Verwaal R, Wang J, Meijnen JP, Visser H, Sandmann G, Berg JA, van Ooyen AJ, Appl. Environ. Microbiol., 73, 4342, 2007
  4. Shimada H, Kondo K, Fraser PD, Miura Y, Saito T, Misawa N, Appl. Environ. Microbiol., 64, 2676, 1998
  5. Yan GL, Wen KR, Duan CQ, Curr. Microbiol., 64(2), 159, 2012
  6. Luo HH, Niu YY, Duan CQ, Su HJ, Yan GL, Process Biochem., 48, 195, 2013
  7. Reyes LH, Gomez JM, Kao KC, Metab. Eng., 21, 26, 2014
  8. Shi F, Zhan WB, Li YF, Wang XY, World J. Microbiol. Biotechnol., 30, 125, 2014
  9. Tronchoni J, Rozes N, Querol A, Guillamon JM, Int. J. Food Microbiol., 155, 191, 2012
  10. Sakamoto T, Murata N, Curr. Opin. Microbiol., 5, 206, 2002
  11. Yan GL, Liang HY, Duan CQ, Han BZ, Curr. Microbiol., 64(2), 152, 2012
  12. Shang F, Wen SH, Wang X, Tan TW, J. Biotechnol., 122, 285, 2006
  13. Zhang FZ, Ouellet M, Batth TS, Adams PD, Petzold CJ, Mukhopadhyay A, Keasling JD, Metab. Eng., 14, 653, 2012
  14. Cao SN, Zhang XW, Ye NH, Fan X, Mou SL, Xu D, Liang CW, Wang YT, Wang WQ, Biochem. Biophys. Res. Commun., 424(1), 118, 2012
  15. Du H, Wu N, Chang Y, Li XH, Xiao JH, Xiong LZ, Plant Mol. Biol., 83, 475, 2013
  16. Livak KJ, Schmittgen TD, Methods, 25, 402, 2001
  17. Maury J, Asadollahi MA, Moller K, Clark A, Nielsen J, Adv. Biochem. Eng. Biotechnol., 100, 19, 2005
  18. Tokuhiro K, Muramatsu M, Ohto C, Kawaguchi T, Obata S, Muramoto N, Hirai M, Takahashi H, Kondo A, Sakuradani E, Shimizu S, Appl. Environ. Microbiol., 75, 5536, 2009
  19. Panadero J, Pallotti C, Rodriguez-Vargas S, Randez-Gil F, Prieto JA, J. Biol. Chem., 281, 4638, 2006
  20. Miao LL, Chi S, Tang YC, Su Z, Yin T, Guan G, Li Y, FEMS Yeast. Res., 11, 192, 2011
  21. Heath RJ, Rubin JR, Holland DR, Zhang E, Snow ME, Rock CO, J. Biol. Chem., 274, 11110, 1999
  22. Lund ED, Soudant P, Chu FLE, Harvey E, Bolton S, Flowers A, Dis. Aquat. Org., 67, 217, 2005
  23. Xie WP, Liu M, Lv XM, Lu WQ, Gu JL, Yu HW, Biotechnol. Bioeng., 111(1), 125, 2014
  24. Beltran G, Novol M, Leberre V, Sokol S, Labourdette D, Guillamon J, Mas A, Francois J, Rozes N, FEMS Yeast. Res., 6, 1167, 2006
  25. Nagy G, Farkas A, Csernetics A, Bencsik O, Szekeres A, Nyilasi I, Vagvolgyi C, Papp T, BMC Microbiol., 14, 93, 2014
  26. Van LTA, Lin YH, Miller CL, Karna SL, Chambers JP, Seshu J, PLoS ONE, 7(5), e38171. DOI:10.1371/journal.pone.0038171(2012).
  27. Celekli A, Donmez G, World J. Microbiol. Biotechnol., 22, 183, 2006
  28. Orosa M, Franqueira D, Cid A, Abalde J, Bioresour. Technol., 96(3), 373, 2005
  29. Xu F, Yuan QP, Zhu Y, Process Biochem., 42, 289, 2007
  30. Yadav VG, Mey MD, Lim CG, Ajikumar PK, Stephanopoulos G, Metab. Eng., 14, 233, 2012
  31. Keasling JD, Metab. Eng., 14, 189, 2012