Issue
Korean Journal of Chemical Engineering,
Vol.32, No.7, 1333-1339, 2015
Photodegradation of formaldehyde by activated carbon loading TiO2 synthesized via microwave irradiation
A microwave-assisted synthetic method to form a series of AC/TiO2 for application as photocatalytic degradation of formaldehyde (HCHO) is presented. The influence of prepared conditions such as microwave power, microwave time, and the ratio of activated carbon and titanium dioxide sol (AC/TiO2-sel) on the degradation of HCHO was investigated. HCHO conversion of 58.68% was achieved by AC/TiO2 at microwave power of 700W for 15 min with AC/TiO2-sel ratio of 1 : 2, which maintained multiple properties including high content of anatase and TiO2 largely distributed on AC without reunion, and possessed abundant functional groups for degradation. The influence of operation parameters on the degradation was also investigated: increasing dosage of catalyst and decreasing the initial concentration of HCHO could increase the conversion of HCHO. Acidic conditions can promote degradation effect. Stronger intensity of UV irradiating could improve efficiency of photocatalytic conversion of HCHO.
[References]
  1. Akbarzadeh R, Umbarkar SB, Sonawane RS, Takle S, Dongare MK, Appl. Catal. A: Gen., 374(1-2), 103, 2010
  2. Liang WJ, Li J, Build. Environ., 51, 345, 2012
  3. Sha LZ, Zhao HF, Fiber. Polym., 14, 976, 2013
  4. Dennis YCL, Fu XL, Ye DQ, Kinet. Catal., 53, 239, 2012
  5. Pei JJ, Zhang JSS, Chem. Eng. J., 167(1), 59, 2011
  6. Wang Y, Zhu A, Catal. Commun., 36, 52, 2013
  7. Qu XG, Liu WX, Ma J, Cao WB, Res. Chem. Intermed., 35, 313, 2009
  8. Zhang GK, Qin X, Mater. Res. Bull., 48(10), 3743, 2013
  9. Lu YW, Wang DH, Build. Environ., 45, 615, 2010
  10. Chen ML, Bae JS, Won CO, Bull. Korean Chem. Soc., 27, 1423, 2006
  11. Han ZN, Chang VW, Wang XP, Lim TT, Hildemann L, Chem. Eng. J., 218, 9, 2013
  12. Sterte J, Clay. Clay Miner., 34, 658, 1986
  13. Huang B, Saka S, J. Wood Sci., 49, 79, 2003
  14. He Z, Yang S, Ju Y, Sun C, J. Environ. Sci., 21, 268, 2009
  15. Natalia GA, Ricardo S, Clara B, Carbon, 55, 62, 2013
  16. Lu YW, Wang DH, Wu YT, Ma CF, Zhang XJ, Yang CX, Int. J. Photoenergy, 2012, 1, 2012
  17. Serpone N, Borgarello E, Barbeni M, J. Photochem., 36, 373, 1987
  18. Reza O, Raoof JR, Talanta, 99, 277, 2012
  19. Wu X, Jiang QZ, Ma ZF, Shangguan WF, Solid State Commun., 143, 343, 2007
  20. Borkar SA, Dharwadkar SR, J. Therm. Anal. Calorim., 78, 761, 2004
  21. Horikoshi S, Sakai F, Kajitani M, Abe M, Serpone N, Chem. Phys. Lett., 470(4-6), 304, 2009
  22. Yang Y, Wang GZ, Deng Q, Dickon HLN, Zhao HJ, Acs. Appl. Mater. Int., 6, 3008, 2014
  23. Coromelci-Pastravanu C, Ignat M, Popovici E, Harabagiu V, J. Hazard. Mater., 278, 382, 2014
  24. Li YX, Li H, Li JS, Tang B, Zhang SR, Chen HT, Wei Y, J. Electron. Mater., 43, 1107, 2014
  25. Kuznetsova IN, Blaskov V, Znaidi L, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 137, 31, 2007
  26. Kaur M, Verma Nk, Mater. Sci.: Poland, 31, 378, 2013
  27. Liu YQ, Deng CB, Xian P, He JH, Li XP, Xu YB, Tang M, Adv. Mater. Res., 518-523, 2925, 2012
  28. Fu PF, Zhang PY, Appl. Catal. B: Environ., 96(1-2), 176, 2010
  29. Qi H, Sun DZ, Chi GQ, J. Environ. Sci., 19, 1136, 2007
  30. Yu QL, Brouwers HJH, Appl. Catal. B: Environ., 92(3-4), 454, 2009