Issue
Korean Journal of Chemical Engineering,
Vol.32, No.7, 1305-1313, 2015
Effect of the TiO2 phase and loading on oxygen reduction reaction activity of PtCo/C catalysts in proton exchange membrane fuel cells
We investigated the effect of the TiO2 phase, as either pure rutile (TiO2(R)) or a 4 : 1 (w/w) anatase: rutile ratio (TiO2(AR)), and the loading on the activity of PtCo/C catalyst in the oxygen reduction reaction (ORR) in a proton exchange membrane (PEM) fuel cell. The incorporation of the different phases and loading of TiO2 on the PtCo/C catalyst did not affect the alloy properties or the crystalline size of the PtCo/C catalyst, but affected importantly the electrochemical surface area (ESA), conductivity of catalyst layer and the water management ability. The presence of TiO2(AR) at appropriate quantity can decrease the mass transport limitation as well as the ohmic resistance of catalyst layer. As a result, the optimum loading of TiO2(AR) used to incorporated in the layer of PtCo/C catalyst was 0.06mg/cm2. At this content, the TiO2(AR)-PtCo/C catalyst provided the highest current density of 438 mA/cm2 at 0.6V at atmospheric pressure in PEM fuel cell and provided the kinetic current in acid solution of 20.53 mA/cm2. In addition, the presence of TiO2(AR) did not alter the ORR electron pathway of PtCo/C catalyst. The electron pathway of ORR of TiO2(AR)-PtCo/C was still the four-electron pathway.
[References]
  1. Lin JH, Chen WH, Su YJ, Ko TH, Fuel, 87(12), 2420, 2008
  2. Tang Y, Yuan W, Pan MQ, Li ZT, Chen GQ, Li Y, Appl. Energy, 87(4), 1410, 2010
  3. Zhang XQ, Guo JC, Chen JC, Energy, 35(12), 5294, 2010
  4. Bezerra CWB, Zhang L, Liu HS, Lee KC, Marques ALB, Marques EP, Wang HJ, Zhang JJ, J. Power Sources, 173(2), 891, 2007
  5. Trongchuankij W, Pruksathorn K, Hunsom M, Appl. Energy, 88(3), 974, 2011
  6. Kocha SS, Electrochemical degradation: Electrocatalyst and support durability, Polymer electrolyte fuel cell degradation. In: Mench MM, Kumbur EC, Nejat Veziroglu T (Eds.) Massachusetts, Elsevier (2011).
  7. Vante NA, Tributsch H, Nature, 323, 431, 1986
  8. Fernandez JL, Raghuveer V, Manthiram A, Bard AJ, J. Am. Chem. Soc., 127(38), 13100, 2005
  9. Bagotsky VS, Fuel cells, Problems and Solution. Chichester, UK, Wiley (2009).
  10. Yongjun F, Nicolas AV, Phys. Status Solidi B, 245, 1792, 2008
  11. Zhang L, Zhang JJ, Wilkinson DP, Wang HJ, J. Power Sources, 156(2), 171, 2006
  12. Baresel D, Sarholz W, Scharner P, Bunsen-Ges JS, Phys. Chem. Chem. Phys., 78, 608, 1974
  13. Susac D, Sode A, Zhu L, Wong PC, Teo M, Bizzotto D, Mitchell KAR, Parsons PR, Campbell SA, J. Phys. Chem. B, 110, 10760, 2006
  14. Lee K, Zhang L, Zhang J, Electrochem. Commun., 9, 1704, 2007
  15. Zhong H, Zhang H, Liu G, Liang Y, Hu J, Yi B, Electrochem. Commun., 8, 707, 2006
  16. Zhong HX, Zhang HM, Liang YM, Zhang JL, Wang MR, Wang XL, J. Power Sources, 164(2), 572, 2007
  17. Charreteur F, Jaouen F, Ruggeri S, Dodelet JP, Electrochim. Acta, 53(6), 2925, 2008
  18. Wang X, Lee JS, Zhu Q, Liu L, Wang Y, Dai S, Chem. Mater., 22, 2178, 2010
  19. Kim JH, Ishihara A, Mitsushima S, Kamiya N, Ota KI, Chem. Lett., 36(4), 514, 2007
  20. Bezerra CWB, Zhang L, Lee KC, Liu HS, Zhang JL, Shi Z, Marques ALB, Marques EP, Wu SH, Zhang JJ, Electrochim. Acta, 53(26), 7703, 2008
  21. Gojkovic SL, Gupta S, Savinell RF, Electrochim. Acta, 45(6), 889, 1999
  22. Contamin O, Debiemme-Chouvy C, Savy M, Scarbeck G, J. New Mater Electrochem. Syst., 3, 67, 2000
  23. Schulenburg H, Stankov S, Schunemann V, Radnik J, Dorbandt I, Fiechter S, Bogdanoff P, Tributsch H, J. Phys. Chem. B, 107(34), 9034, 2003
  24. Medard C, Lefevre M, Dodelet JP, Jaouen F, Lindbergh G, Electrochim. Acta, 51(16), 3202, 2006
  25. Baker R, Wilkinson DP, Zhang JJ, Electrochim. Acta, 53(23), 6906, 2008
  26. Pylypenko S, Mukherjee S, Olson TS, Atanassov P, Electrochim. Acta, 53(27), 7875, 2008
  27. Koslowski UI, Abs-Wurmbach I, Fiechter S, Bogdanoff P, J. Phys. Chem. C, 112, 15356, 2008
  28. Herrmann I, Kramm UI, Fiechter S, Bogdanoff P, Electrochim. Acta, 54(18), 4275, 2009
  29. Jalan V, Taylor EJ, J. Electrochem. Soc., 130, 2299, 1983
  30. Paffett MT, Berry GJ, Gottesfeld S, J. Electrochem. Soc., 135, 1431, 1988
  31. Beard BC, Ross PN, J. Electrochem. Soc., 137, 3368, 1990
  32. Toda T, Igarashi H, Uchida H, Watanabe M, J. Electrochem. Soc., 146, 3750, 1993
  33. Elezovic NR, Babic BM, Radmilovic VR, Vracar LM, Krstajic NV, Electrochim. Acta, 54(9), 2404, 2009
  34. Bauer A, Song CJ, Ignaszak A, Hui R, Zhang JJ, Chevallier L, Jones D, Roziere J, Electrochim. Acta, 55(28), 8365, 2010
  35. Huang SY, Ganesan P, Popov BN, Appl. Catal. B: Environ., 96(1-2), 224, 2010
  36. Chisaka M, Ishihara A, Ota K, Muramoto H, Electrochim. Acta, 113, 735, 2013
  37. Limpattayanate S, Hunsom M, J. Solid State Electrochem., 17, 1221, 2013
  38. Huang SY, Ganesan P, Popov BN, Appl. Catal. B: Environ., 102, 102, 2011
  39. Fugane K, Mori T, Ou DR, Suzuki A, Yoshikawa H, Masuda T, Uosaki K, Yamashita Y, Ueda S, Kobayashi K, Okazaki N, Matolinova I, Matolin V, Electrochim. Acta, 56(11), 3874, 2011
  40. Vuk AS, Jese R, Orel B, Drazic G, Int. J. Photoenergy, 7, 163, 2005
  41. Thanasilp S, Hunsom M, Electrochim. Acta, 56(3), 1164, 2011
  42. Trongchuankij W, Poochinda K, Pruksathorn K, Hunsom M, Renew. Energy, 12, 2839, 2010
  43. Yin SB, Mu SC, Lv HF, Cheng NAC, Pan M, Fu ZY, Appl. Catal. B: Environ., 93(3-4), 233, 2010
  44. Ungar T, Gubieza J, Tichy G, Pantea C, Zerda TW, Compos. Pt. A-Appl. Sci. Manuf., 36, 431, 2005
  45. Ra Y, Lee J, Kim I, Bong S, Kima H, J. Power Sources, 187(2), 363, 2009
  46. Wang ZB, Yin GP, Shi PF, Sun YC, Electrochem. Solid State Lett., 9(1), A13, 2006
  47. Lopes T, Antolini E, Gonzalez ER, Int. J. Hydrog. Energy, 33(20), 5563, 2008
  48. Fujishima A, Hashimoto K, Watanabe T, TiO2 Photocatalysis, Fundamentals and Applications, Tokyo Japan, BKC Inc. (1990).
  49. Eppler AM, Ballard IN, Nelson J, Physica E, 14, 197, 2002
  50. Pomoni K, Sofianou MV, Georgakopoulos T, Boukos N, Trapalis C, J. Alloy. Compd., 548, 194, 2013
  51. Kim J, Lee SM, Srinivasan S, Chamberlin CE, J. Electrochem. Soc., 142(8), 2670, 1995
  52. Antolini E, Giorgi L, Pozio A, Passalacqua E, J. Power Sources, 77(2), 136, 1999
  53. Santiago EI, Isidoro RA, Dresch MA, Matos BR, Linardi M, Fonseca FC, Electrochim. Acta, 54(16), 4111, 2009
  54. Liu ZL, Guo B, Huang JC, Hong L, Han M, Gan LM, J. Power Sources, 157(1), 207, 2006
  55. Bard AJ, Faulkner LR, Electrochemical methods: Fundamentals and applications, 2nd Ed. New York, Wiley (2000).