Issue
Korean Journal of Chemical Engineering,
Vol.32, No.7, 1249-1257, 2015
Effects of membrane characteristics on performances of pressure retarded osmosis power system
Effects of the characteristics of membrane such as water permeability-coefficient, solute permeability-coefficient, and membrane resistivity on the performances of the spiral wound module in the PRO system have been studied numerically. Fluxes of water and solute through membrane, and concentrations and flow rates in the channels were obtained. The water flux through membrane increases almost linearly with the water permeability-coefficient, but it is insensitive to the solute permeability-coefficient. Decreasing the membrane resistivity makes the water flux through membrane and the power density increase. Effects of the membrane resistivity on the water flux through membrane and flow rates in the channels are small when the difference between the inlet-pressures of draw- and feed-channel is large and vice versa. The power density increases and then decreases as the channel-inlet pressure difference increases. The maximum power density is 16 W/m2 at 14 atm of the channel-inlet pressure difference in our system.
[References]
  1. Jones AT, Rowley W, Mater. Technol. Soc. J., 36, 85, 2003
  2. Yip NY, Elimelech M, Environ. Sci. Technol., 46, 5230, 2011
  3. Yip NY, Elimelech M, Environ. Sci. Technol., 45, 10273, 2011
  4. Thorsen T, Holt T, J. Membr. Sci., 335(1-2), 103, 2009
  5. Yip NY, Tiraferri A, Phillip WA, Schiffman JD, Hoover LA, Kim YC, Elimelech M, Environ. Sci. Technol., 45, 4360, 2011
  6. Kim KS, Ryoo W, Chun MS, Chung GY, Lee SO, Korean J. Chem. Eng., 29(2), 162, 2012
  7. Kim KS, Ryoo W, Chun MS, Chung GY, Desalination, 318, 79, 2013
  8. Alsvik IL, Hagg MB, Polymer, 5, 303, 2013
  9. Pattle RE, Nature, 174, 660, 1954
  10. Achilli A, Childress AE, Desalination, 261(3), 205, 2010
  11. Gerstandt K, Peinemann KV, Skilhagen SE, Thorsen T, Holt T, Desalination, 224(1-3), 64, 2008
  12. Statkraft osmotic power prototype plant design, 21. Dec. 2013, (http://www.statkraft.com/energy-sources/osmotic-power/prototype/pant-design.aspx).
  13. Achilli A, Cath TY, Childress AE, J. Membr. Sci., 343(1-2), 42, 2009
  14. Sundaramoorthy S, Srinivasan G, Murthy DVR, Desalination, 280(1-3), 403, 2011
  15. Hong SS, Ryoo W, Chun MS, Lee SO, Chung GY, Desalin. Water Treat., 52, 6333, 2014
  16. Hong SS, Ryoo W, Chun MS, Chung GY, Korean Chem. Eng. Res., 52(1), 68, 2014
  17. Cath TY, Childress AE, Elimelech M, J. Membr. Sci., 281(1-2), 70, 2006
  18. Phillip WA, Yong JS, Elimelech M, Environ. Sci. Technol., 44, 5170, 2010
  19. Schwinge J, Neal PR, Wiley DE, Fletcher DF, Fane AG, J. Membr. Sci., 242(1-2), 129, 2004
  20. Hwang ST, Korean J. Chem. Eng., 28(1), 1, 2011
  21. Lee KL, Baker RW, Lonsdale HK, J. Membr. Sci., 8, 141, 1981
  22. McCutcheon JR, Elimelech M, AIChE J., 53(7), 1736, 2007
  23. You Y, Huang S, Yang Y, Liu C, Wu Z, Yu X, Adv. Computer Sci. Eng., 141, 307, 2012
  24. She QH, Jin X, Tang CYY, J. Membr. Sci., 401, 262, 2012
  25. Kim S, Hoek EMV, Desalination, 186(1-3), 111, 2005
  26. Kim YC, Kim Y, Oh DW, Lee KH, Environ. Sci. Technol., 47, 2966, 2013
  27. Senthilmurugan S, Ahluwalia A, Gupta SK, Desalination, 173(3), 269, 2005
  28. Sundaramoorthy S, Srinivasan G, Murthy DVR, Desalination, 277(1-3), 257, 2011
  29. Hung LY, Lue SJ, You JH, Desalination, 265(1-3), 67, 2011