Issue
Korean Journal of Chemical Engineering,
Vol.32, No.2, 248-254, 2015
Preparation of activated carbon aerogel and its application to electrode material for electric double layer capacitor in organic electrolyte: Effect of activation temperature
Carbon aerogel was chemically activated with KOH at various activation temperatures with the aim of improving the electrochemical performance of carbon aerogel for EDLC electrode. Electrochemical performance of activated carbon aerogel electrode was determined by cyclic voltammetry and galvanostatic charge/discharge methods using coin-type EDLC cell in organic electrolyte. Activation temperature played an important role in determining the electrochemical performance of activated carbon aerogel for EDLC electrode. Specific capacitance of activated carbon aerogel at a high current density (5 A/g) showed a volcano-shaped curve with respect to activation temperature. Excessively high activation temperature could have an adverse effect on the electrochemical properties of activated carbon aerogel due to the low electrical conductivity caused by a collapse of characteristic structure of carbon aerogel. Among the carbon samples, carbon aerogel activated at 800 ℃ with a high surface area and a well-developed porous structure exhibited the highest specific capacitance. In addition, carbon aerogel activated at 800 ℃ retained a considerable specific capacitance at a high current density even after 1000 cycles of charge/discharge. Therefore, it is concluded that carbon aerogel activated with KOH at 800 ℃ can serve as an efficient electrode material for commercial EDLC with a high power density.
[References]
  1. Sharma P, Bhatti TS, Energy Conv. Manag., 51(12), 2901, 2010
  2. Frackowiak E, Abbas Q, Beguin F, J. Energy Chem., 22, 226, 2013
  3. Candelariaa SL, Shao Y, Zhouc W, Li X, Xiao J, Zhang JG, Wang Y, Liu J, Li J, Cao G, Nano Energy, 1, 195, 2012
  4. Jeong MG, Zhuo K, Cherevko S, Chung CH, Korean J. Chem. Eng., 29(12), 1802, 2012
  5. Thambidurai A, Lourdusamy JK, John JV, Ganesan S, Korean J. Chem. Eng., 31(2), 268, 2014
  6. Frackowiak E, Beguin F, Carbon, 39, 937, 2001
  7. Wei L, Yushin G, Nano Energy, 1, 552, 2012
  8. Jeong E, Jung MJ, Cho SH, Lee SI, Lee YS, Colloids Surf., A, 377, 243, 2011
  9. Elmouwahidi A, Zapata-Benabithe Z, Carrasco-Marin F, Moreno-Castilla C, Bioresour. Technol., 111, 185, 2012
  10. Zhang Y, Feng H, Wu XB, Wang LZ, Zhang AQ, Xia TC, Dong HC, Li XF, Zhang LS, Int. J. Hydrog. Energy, 34(11), 4889, 2009
  11. Guo Y, Shi Z, Chen M, Wang C, J. Power Sources, 252, 235, 2014
  12. Huang Y, Liang J, Chen Y, Small, 8, 1805, 2012
  13. Vivekchand SRC, Rout CS, Subrahmanyam KS, Govindaraj A, Rao CNR, J. Chem. Sci., 120, 9, 2008
  14. Perera SD, Liyanage AD, Nijem N, Ferraris JP, Chabal YJ, Balkus KJ, J. Power Sources, 230, 130, 2013
  15. Wu ZS, Zhou G, Yin LC, Ren W, Li F, Cheng HM, Nano Energy, 1, 107, 2012
  16. Yoon SH, Lim S, Song Y, Ota Y, Qiao W, Tanaka A, Mochida I, Carbon, 42, 1723, 2004
  17. Zhong J, Yang Z, Mukherjee R, Thomas AV, Zhu K, Sun P, Lian J, Zhu H, Koratkar N, Nano Energy, 2, 1025, 2013
  18. Niu Z, Luan P, Shao Q, Dong H, Li J, Chen J, Zhao D, Cai L, Zhou W, Chen X, Xie S, Energy Environ. Sci., 5, 8726, 2012
  19. Pekala RW, Farmer JC, Alviso CT, Tran TD, Mayer ST, Miller JM, Dunn B, J. Non-Cryst. Solids, 225, 74, 1998
  20. Wu XL, Jia WB, Chem. Eng. J., 245, 210, 2014
  21. Robertson C, Micropor. Mesopor. Mater., 179, 151, 2013
  22. Hwang SW, Hyun SH, J. Non-Cryst. Solids, 347, 238, 2004
  23. Wang X, Wang X, Liu L, Bai L, An H, Zheng L, Yi L, J. Non-Cryst. Solids, 357, 793, 2011
  24. Lee YJ, Kim GP, Bang Y, Yi J, Seo JG, Song IK, Mater. Res. Bull., 50, 240, 2014
  25. Xia K, Gao Q, Jiang J, Hu J, Carbon, 46, 1718, 2008
  26. Nabaisa JMV, Nunes P, Carrott PJM, Carrott MMLR, Garcia AM, Diaz-Diez MA, Fuel Process. Technol., 89
  27. Lee SY, Park SJ, J. Solid State Chem., 207, 158, 2013
  28. Sahin O, Saka C, Bioresour. Technol., 136, 163, 2013
  29. Lee SY, Park SJ, J. Colloid Interface Sci., 389, 230, 2013
  30. de Souza LKC, Wickramaratne NP, Ello AS, Costa MJF, da Costa CEF, Jaroniec M, Carbon, 65, 334, 2013
  31. Zhao XY, Huang SS, Cao JP, Xi SC, Wei XY, Kamamoto J, Takarada T, J. Anal. Appl. Pyrol., 105, 116, 2014
  32. Xu B, Wu F, Su YF, Cao GP, Chen S, Zhou ZM, Yang YS, Electrochim. Acta, 53(26), 7730, 2008
  33. Lei CH, Markoulidis F, Ashitaka Z, Lekakou C, Electrochim. Acta, 92, 183, 2013