Issue
Korean Journal of Chemical Engineering,
Vol.32, No.2, 230-238, 2015
Oxidation of formaldehyde, carbon monoxide and methanol over manganese-cerium-aluminum oxides supported on cordierite monoliths
Catalytic oxidation of formaldehyde, carbon monoxide, and methanol over cordierite-supported manganese-cerium-aluminum mixed oxides was investigated in a laboratory reactor. The activities of base metal oxides (BMO) comprising 27% MnO2, 21% CeO2, and 52% Al2O3 supported on cordierite monoliths calcined at 1,000 ℃ for 3 h in air dropped very rapidly due to the migration of mobile silicon dioxide (SiO2) from the cordierite to the base metal oxides to react with or physically block the active catalysts. To immobilize migrating SiO2, barrier coats composed of alkali metal (Ba, Sr, Ca, Mg) oxides and alumina were applied to the cordierite prior to coating with active base metal oxides. The base metal oxides supported on cordierite monoliths pretreated with BaO-Al2O3 barrier coats and calcined at 1,000 ℃ for 3 h in air, initiated the oxidation of HCHO, CO, and CH3OH at 150, 220, and 170 ℃, respectively. These catalysts turned out to be more effective for the formaldehyde oxidation than 0.5% Pt/Al2O3 precious metal catalysts. Carbon monoxide and methanol oxidation conversions were comparable. The incorporation of small amount of palladium (0.147 wt%) to base metal oxides supported on cordierite monoliths pretreated with BaO-Al2O3 barrier coats, showed the superiority for HCHO, CO, and CH3OH oxidation to 0.5% Pt/Al2O3 precious metal catalysts. The temperatures of 50% conversion of formaldehyde, carbon monoxide and methanol were 70 ℃ lower over base metal oxides catalysts than over precious metal catalysts.
[References]
  1. Adelman HG, Andrews DG, Devoto RS, SAE Paper, 1972
  2. Piotrowski GK, Murrell JD, SAE Paper 872052, 1987
  3. Nichols RJ, Clinton EL, King ET, Smith CS, Wineland RJ, SAE Paper 881200, 1988
  4. Summers JC, White JJ, Williamson WB, SAE Paper 890794, 1989
  5. Jakse FP, Friedman RM, Delk FS, Buloch JW, Appl. Catal., 14, 303, 1985
  6. Sodhi D, Abraham MA, Summers JC, J. Air Waste Manage. Assoc., 40, 352, 1990
  7. Chuang KT, Zhou B, Tong SM, Ind. Eng. Chem. Res., 33(7), 1680, 1994
  8. Nishimura A, Sekine Y, Atmos. Environ., 35, 2001, 2001
  9. Sekine Y, Atmos. Environ., 36, 5543, 2002
  10. Zhang C, He H, Tanaka K, Catal. Commun., 6, 211, 2005
  11. Tang XF, Li YG, Huang XM, Xu YD, Zhu HQ, Wang JG, Shen WJ, Appl. Catal. B: Environ., 62(3-4), 265, 2006
  12. Peng JX, Wang SD, Appl. Catal. B: Environ., 73(3-4), 282, 2007
  13. McCabe RW, Mitchell PJ, IEC Prod. Res. Dev., 22, 212, 1983
  14. McCabe RW, Mitchell PJ, IEC Prod. Res. Dev., 23, 196, 1984
  15. McCabe RW, McCready DF, Chem. Phys. Lett., 111, 89, 1984
  16. McCabe RW, Mitchell PJ, Appl. Catal., 27, 83, 1986
  17. McCabe RW, Mitchell PJ, J. Catal., 103, 419, 1987
  18. McCabe RW, Mitchell PJ, Appl. Catal., 44, 73, 1988
  19. Foster JJ, Masel RI, IEC Prod. Rev. Dev., 25, 563, 1988
  20. Imamura S, Uematsu Y, Utani K, IEC Res., 30, 18, 1991
  21. Imamura S, Uchihori D, Utani K, Ito T, Catal. Lett., 24(3-4), 377, 1994
  22. Mao CF, Vannice MA, J. Catal., 154(2), 230, 1995
  23. Alvarez-Galvan MC, Pawelec B, O'Shea VAD, Fierro JLG, Arias PL, Appl. Catal. B: Environ., 51(2), 83, 2004
  24. O'Shea VADP, Alvarez-Galvan MC, Fierro JLG, Arias PL, Appl. Catal. B: Environ., 57(3), 191, 2005
  25. Torres JQ, Giraudon JM, Lamonier JF, Catal. Today, 176(1), 277, 2011
  26. Gentry SJ, Jones A, J. Appl. Chem. Biotechnol., 28, 727, 1978
  27. Gandhi H, Williamson WB, Goss RL, Marcotty LD, Lewis D, SAE Paper 860565, 1986
  28. Heck RM, Farauto RJ, Lee HC, Catal. Today, 13, 43, 1992
  29. Smith GV, Stochs J, Degendra S, Wiltowski T, Catal. Org. React., Pasco E Ed., Catalysis of organic reactions, Pasco E Ed., Marcel Dekker, 1991
  30. Libanati C, Ullenius DA, Pereira CJ, Appl. Catal. B: Environ., 15(1-2), 21, 1998