Issue
Korean Journal of Chemical Engineering,
Vol.32, No.1, 178-183, 2015
MnO/C nanocomposite prepared by one-pot hydrothermal reaction for high performance lithium-ion battery anodes
Among various candidates to replace the low capacity graphitic carbon anode in current lithium ion batteries (LIBs), manganese oxides possess the advantages of high lithium storage capacity, low cost, high intrinsic density, environmental friendliness and low lithium storage voltage, i.e., 0.5 V Li+/Li. Manganese oxides, however, have to be incorporated with conducting and porous matrix due to poor electrical conductivity and large volume expansions associated with conversion reaction upon cycling. In this study, a facile one-pot route was attempted for the synthesis of MnO/C nanocomposite for which Mn3O4 nanoparticles were grown in aqueous medium followed by carbon gel formation in a one-pot reactor. Thus obtained Mn3O4/C carbon gel was transformed into MnO/C nanocomposite by thermal annealing in an Ar flow. The MnO nanoparticles (60wt%) of 20-50 nm in diameter were well dispersed throughout the MnO/C composite. The MnO/C composite delivered reversible capacity of 541mAh g-1 with an excellent cycling stability over 100 cycles, while parent Mn3O4 lost most of its capacity in 10 cycles. The MnO/C composite also exhibited much higher rate capability than a commercial graphite anode. Hence, the MnO/C composite based on low cost materials and facile synthetic process could be an attractive candidate for large-scale energy storage applications.
[References]
  1. Taberna L, Mitra S, Poizot P, Simon P, Tarascon JM, Nat. Mater., 5(7), 567, 2006
  2. Whittingham MS, MRS Bull., 33, 411, 2008
  3. Scrosati B, Garche J, J. Power Sources, 195(9), 2419, 2010
  4. Cabana J, Monconduit L, Larcher D, Palacin MR, Adv. Mater., 22, 170, 2010
  5. Tarascon JM, Phil. Trans. R. Soc., 368, 3227, 2010
  6. Chae C, Noh HJ, Lee JK, Scrosati B, Sun YK, Adv. Funct. Mater., DOI:10.1002/adfm.201303766., 2014
  7. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM, Nature, 407, 496, 2000
  8. Kim SS, J. Korean Electrochem. Soc., 11, 211, 2008
  9. Zhang HJ, Tao HH, Jiang Y, Jiao Z, Wu MH, Zhao B, J. Power Sources, 195(9), 2950, 2010
  10. Cheng MY, Hwang BJ, J. Power Sources, 195(15), 4977, 2010
  11. Zhang WM, Wu XL, Hu JS, Guo YG, Wan LJ, Adv. Funct. Mater., 18(24), 3941, 2008
  12. Yoon T, Chae C, Sun YK, Zhao X, Kung HH, Lee JK, J. Mater. Chem., 21, 17325, 2011
  13. Wang HL, Cui LF, Yang YA, Casalongue HS, Robinson JT, Liang YY, Cui Y, Dai HJ, J. Am. Chem. Soc., 132(40), 13978, 2010
  14. Poizot P, Laruelle S, Grugeon S, Tarascon JM, J. Electrochem. Soc., 149, 1212, 2002
  15. Chae C, Kim JH, Kim JM, Sun YK, Lee JK, J. Mater. Chem., 22, 17870, 2012
  16. Yoon T, Kim J, Kim J, Lee JK, Energies, 6, 4830, 2013
  17. Chae C, Park H, Kim D, Kim J, Oh ES, Lee JK, J. Power Sources, 244, 214, 2013
  18. Ahn CW, Chung YH, Hahn BD, Park DS, Sung YE, Korean J. Chem. Eng., 29(8), 985, 2012
  19. Fang X, Lu X, Guo X, Mao Y, Hu YS, Wang J, Wang Z, Wu F, Liu H, Chen L, Electrochem. Commun., 12, 1520, 2010
  20. Zhong KF, Xia X, Zhang B, Li H, Wang ZX, Chen LQ, J. Power Sources, 195(10), 3300, 2010
  21. Zhong KF, Zhang B, Luo SH, Wen W, Li H, Huang XJ, Chen LQ, J. Power Sources, 196(16), 6802, 2011
  22. He Y, Huang L, Cai JS, Zheng XM, Sun SG, Electrochim. Acta, 55(3), 1140, 2010
  23. Lian PC, Zhu XF, Xiang HF, Li Z, Yang WS, Wang HH, Electrochim. Acta, 56(2), 834, 2010
  24. Kang M, Park ED, Kim JM, Yie JE, Appl. Catal. A: Gen., 327(2), 261, 2007
  25. Feng Q, Yanagisawa K, Yamasaki N, J. Porous Mater., 5, 153, 1998
  26. Ching S, Roark JL, Chem. Mater., 9, 750, 1997
  27. Malinger KA, Ding YS, Sithambaram S, Espinal L, Gomez S, Suib SL, J. Catal., 239(2), 290, 2006
  28. Gao J, Lowe MA, Abruna HD, Chem. Mater., 23, 3223, 2011
  29. Cui ZM, Hang LY, Song WG, Guo YG, Chem. Mater., 21, 1162, 2009
  30. Sun B, Chen ZX, Kim HS, Ahn H, Wang GX, J. Power Sources, 196(6), 3346, 2011
  31. Pasero D, Reeves N, West AR, J. Power Sources, 141(1), 156, 2005
  32. Jamnik J, Maier J, Phys. Chem. Chem. Phys., 5, 5215, 2003
  33. Au M, Adams T, J. Mater. Res., 25, 1649, 2010
  34. Li J, Dahn HM, Krause LJ, Le DB, Dahn JR, J. Electrochem. Soc., 15, 812, 2008
  35. Zhou G, Wang DW, Li F, Zhang L, Li N, Wu ZS, Wen L, Lu GQ, Cheng HM, Chem. Mater., 22, 5306, 2010