Issue
Korean Journal of Chemical Engineering,
Vol.32, No.1, 132-140, 2015
Process optimization and characterization of carvedilol solid dispersion with hydroxypropyl-β-cyclodextrin and tartaric acid
The present investigation concerns the experimental design in preparing a solid dispersion of ionized carvedilol with hydroxypropyl-β-cyclodextrin (HPβCD), tartaric acid (TA) by adopting ‘kneading technique’. Simplex lattice design has been chosen to develop model equations that correlate the process variables such as HPβCD (mg), TA (mg), and kneading time (min) with the response variables, such as solubility (mg/mL) and drug release (%) from the solid dispersion. Software-generated ANOVA results confirmed the sufficiency of model equations. Results predicted by model equations are in good agreement with that of experimental results. Optimized formulation with variables ‘CV: HPβCD: TA-kneading time’ (200mg: 689.6mg: 227.6mg-45 min) showed complete drug release (~99%) within 15 min and enhanced solubility of 1.89mg/mL. The instrumental analysis (DSC, XRD& FTIR) of the optimized solid dispersion suggests a transformation of crystallinity of drug to amorphous form, due to its complexation with HPβCD. Hence, this combination of drug and carriers suggests an improvement of carvedilol bioavailability.
[References]
  1. Nagarwal RC, Srinatha A, Pandit JK, AAPS PharmSciTech., 10, 977, 2009
  2. Friesen DT, Crew M, Curatolo WJ, Nightingale JAS, Shanker R, Smithey DT, Mol. Pharm., 5, 1003, 2008
  3. Stella VJ, Addae KWN, Adv. Drug Deliv. Rev., 59, 677, 2007
  4. Serajuddin ATM, Adv. Drug Deliv. Rev., 59, 603, 2007
  5. Brittain HG, J. Pharm. Sci., 91, 1573, 2002
  6. Li M, Davies A, Malek N, Qiao N, Schlindwein W, Trappitt G, Int. J. Pharm., 419, 1, 2011
  7. Loftsson T, Amiel C, Jansook P, Larsen KL, Messner M, Moya-Ortega MD, Nielsen TT, Sigurdsson HH, Wintgens V, J. Inclus. Phenom. Macro. Chem., 69, 377, 2011
  8. Rahman MA, Harwansh R, Hussain A, Hussain S, Mirza MA, Curr. Drug Deliv., 8, 330, 2011
  9. Keck CM, Gohla S, Muller RH, Eur. J. Pharm. Biopharm., 78, 1, 2011
  10. Lee JK, Kim KB, Lee MH, Intermetallics, 18, 2019, 2010
  11. Serajuddin ATM, J. Pharm. Sci., 10, 1058, 1999
  12. Loftsson T, Masson M, Schipper N, Sigurdsson HH, Pharmazie, 59, 25, 2004
  13. Cevallos PAP, Buera MP, Elizalde BE, J. Food Eng., 99(1), 70, 2010
  14. Duchene D, Wouessidjewe D, Drug Dev. Ind. Pharm., 16, 2487, 1990
  15. Misiuk W, Zalewska M, Carbohydr. Polym., 77, 482, 2009
  16. Lewis GA, Mathieu D, Luu RPT, Pharmaceutical experimental design, CRC Press, New York.
  17. James Goodnight., JMP 10 Design of Experiments Guide, SAS Publishing, Cary, 177, 2012
  18. Pokharkar V, Dhar S, Khanna A, Mandpe L, Venkatpurwar V, Acta Pharm., 59, 121, 2009
  19. Karasov WH, Diamond JM, J. Comp. Physiol. [B], 152, 105, 1983
  20. Bouer R, Barthe L, Houin G, Philibert C, Tournaire C, Woodley J, Fundam Clin Pharmacol., 13, 494, 1999
  21. Mura P, Bramanti G, Faucci MT, Manderioli A, J. Incl. Phenom. Macroc. Chem., 39, 131, 2001
  22. Labanderia JJT, Diaz MTE, Kata M, Jato JLV, Eur. J. Pharm. Sci., 1, 291, 1994
  23. Ginski MJ, Polli JE, Taneja R, Int. J. Pharm., 177, 117, 1999
  24. Paradkar A, Ambike AA, Jadhav BK, Mahadik KR, Int. J. Pharm., 271, 281, 2004
  25. Wang J, Cao Y, Sun B, Wang C, Food Chem., 124, 1069, 2011
  26. Shamma RN, Basha M, Powder Technol., 237, 406, 2013
  27. Pincu E, Meltzer V, Cent. Eur. J. Chem., 10, 1584, 2012
  28. Pokharkar VB, Mandpe LP, Padamwar MN, Ambike AA, Mahadik KR, Paradkar A, Powder Technol., 167(1), 20, 2006