Issue
Korean Journal of Chemical Engineering,
Vol.32, No.1, 88-96, 2015
Cadmium removal from aqueous solutions by pumice and nano-pumice
Use of low-cost minerals to eliminate mining and industrial pollutants is the main goal of this study. We investigated the ability of pumice and nano-pumice to remove cadmium from a synthetic aqueous solution. Batch experiments were performed to investigate adsorption characteristic; therefore, the effective factors influencing the adsorption process including solution pH, contact time and initial concentration have been considered. Equilibrium data were attempted by Langmuir and Freundlich isotherm models to realize the interaction between adsorbent and adsorbate. The results show that cadmium adsorption on Pumice follows the Langmuir isotherm model with a R2 of 0.9996 and shows a homogeneous and mono-layer adsorption. Whereas, cadmium adsorption on nano-Pumice follows a Freundlich model (R2=0.9939) and exhibits a multi-layer adsorption. The maximum mono-layer capacity (qmax) of cadmium for pumice and nano-pumice was calculated 26 and 200mg/g, respectively. Two different kinetics models including pseudo first-order and pseudo second-order were studied to evaluate the rate and mechanism of cadmium adsorption by pumice and nano-pumice. The kinetics data indicate that a pseudo second-order model provides the best correlation of the experimental data.
[References]
  1. Panuccio MR, Sorgona A, Rizzo M, Cacco G, J. Environ. Manage., 90, 364, 2009
  2. Srivastava VC, Mall ID, Mishra IM, Chem. Eng. J., 117(1), 79, 2006
  3. Gupta VK, Jain CK, Imran A, Sharma M, Saini VK, Water Res., 37(16), 4038, 2003
  4. Wang SB, Peng YL, Chem. Eng. J., 156(1), 11, 2010
  5. Erdem E, Karapinar N, Donat R, J. Colloid Interface Sci., 280(2), 309, 2004
  6. Ijagbemi CO, Baek MH, Kim DS, J. Hazard. Mater., 166(1), 538, 2009
  7. Sdiri A, Higashi T, Hatta T, Jamoussi F, Tase N, Chem. Eng. J., 172(1), 37, 2011
  8. Bhattacharyya KG, Gupta SS, Adv. Colloid Interface Sci., 140(2), 114, 2008
  9. Babel S, Kurniawan TA, J. Hazard. Mater., 97(1-3), 219, 2003
  10. Badii K, Ardejani FD, Saberi MA, Limaee NY, Shafaei SZED, Indian J. Chem. Technol., 17(1), 7, 2010
  11. Bahramian B, Ardejani FD, Mirkhani V, Badii K, Appl. Catal. A: Gen., 345(1), 97, 2008
  12. Khraisheh MAM, Al-Degs YS, Mcminn WAM, Chem. Eng. J., 99(2), 177, 2004
  13. Irani M, Amjadi M, Mousavian MA, Chem. Eng. J., 178, 317, 2011
  14. Mathialagan T, Viraraghavan T, J. Hazard. Mater., 94(3), 291, 2002
  15. Kitis M, Kaplan SS, Karakaya E, Yigit NO, Civelekoglu G, Chemosphere, 66, 130, 2007
  16. Alemayehu E, Lennartz B, Appl. Geochem., 25(10), 1596, 2010
  17. Lin YF, Chen HW, Chien PS, Chiou CS, Liu CC, J. Hazard. Mater., 185(2-3), 1124, 2011
  18. Huang SH, Chen DH, J. Hazard. Mater., 163(1), 174, 2009
  19. Churchman GJ, Gates WP, Theng BKG, Yuan G, Handbook of Clay Science, 1, 1, 2006
  20. Khalid TAR, Nada KA, Zainb JS, Int. J. Electrochem. Sci., 8, 5594, 2013
  21. Doulia D, Leodopoulos C, Gimouhopoulos K, Rigas F, J. Colloid Interface Sci., 340(2), 131, 2009
  22. Jain CK, Hydrological Sci. J., 46, 419, 2001
  23. Silva JP, Sousa S, Rodrigues J, Antunes H, Porter JJ, Goncalves I, Ferreira-Dias S, Sep. Purif. Technol., 40(3), 309, 2004
  24. Liu ZR, Zhou SQ, Process Saf. Environ. Protect., 88(1), 62, 2010
  25. Zaghouane-Boudiaf H, Boutahala M, Int. J. Miner. Process., 100(3-4), 72, 2011
  26. Tekin N, Ates Y, Int. J. Miner. Process., 112-113, 49, 2012
  27. Mostafa MG, Chen YH, Jean JS, Liu CC, Lee YC, J. Hazard. Mater., 187(1-3), 89, 2011
  28. Ardejani FD, Badii K, Limaee NY, Shafaei SZ, Mirhabibi AR, J. Hazard. Mater., 151(2-3), 730, 2008
  29. Al-Rashdi B, Tizaoui C, Hilal N, Chem. Eng. J., 183, 294, 2012
  30. Yousef RI, El-Eswed B, Al-Muhtaseb AH, Chem. Eng. J., 171(3), 1143, 2011