Issue
Korean Journal of Chemical Engineering,
Vol.32, No.1, 79-87, 2015
Biocrude oil production and nutrient recovery from algae by two-step hydrothermal liquefaction using a semi-continuous reactor
We evaluated two-step hydrothermal liquefaction in a semi-continuous reactor for recovery of both nutrients and biocrude from the alga Coelastrum sp. in direct comparison with a one-step process. The influence of the operating temperature, pressure and water flow rate was investigated by means of a 2k factorial experimental design and response surface methodology. The two-step process gave a higher total biocrude yield (~36 wt% (daf. basis)) and nutrient recovery level in terms of nitrogen containing compounds (~60 wt% of the protein content in the original algae as ammonium and nitrate ions and protein/polypeptides) than the single-step process. The highest biocrude yield was achieved at first-step temperature of 473 K, second-step temperature of 593 K, pressure of 200 bar and water flow rate of 0.5 mL/min.
[References]
  1. Demirbas A, Appl. Energy, 88(1), 17, 2011
  2. Demirbas MF, Appl. Energy, 88(10), 3473, 2011
  3. Singh A, Olsen SI, Appl. Energy, 88(10), 3548, 2011
  4. Naik SN, Goud VV, Rout PK, Dalai AK, Renew. Sust. Energy Rev., 14, 578, 2010
  5. Lam MK, Lee KT, Biotech. Adv., 30, 673, 2012
  6. Amaro HM, Macedo AC, Malcata FX, Energy, 44(1), 158, 2012
  7. Akhtar J, Amin NAS, Renew. Sust. Energy Rev., 15, 1615, 2011
  8. Vardon DR, Sharma BK, Scott J, Yu G, Wang ZC, Schideman L, Zhang YH, Strathmann TJ, Bioresour. Technol., 102(17), 8295, 2011
  9. Jena U, Das KC, Kastner JR, Bioresour. Technol., 102(10), 6221, 2011
  10. Peterson AA, Vogel F, Lachance RP, Froling M, Michael J, Antal J, Tester JW, Energ. Environ. Sci., 1, 32, 2008
  11. Anastasakis K, Ross AB, Bioresour. Technol., 102(7), 4876, 2011
  12. Jena U, Vaidyanathan N, Chinnasamy S, Das KC, Bioresour. Technol., 102(3), 3380, 2011
  13. Biller P, Ross AB, Skill SC, Lea-Langton A, Balasundaram B, Hall C, Riley R, Llewellyn CA, Algal Research, 1, 70, 2012
  14. Vardon DR, Sharma BK, Blazina GV, Rajagopalan K, Strathmann TJ, Bioresour. Technol., 109, 178, 2012
  15. Chakraborty M, Miao C, McDonald A, Chen SL, Fuel, 95(1), 63, 2012
  16. U.S. DOE, National Algal Biofuels Technology Roadmap, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass Program, 2010
  17. Harman-Ware AE, Morgan T, Wilson M, Crocker M, Zhang J, Liu KL, Stork J, Debolt S, Renew. Energy, 60, 625, 2013
  18. Brunner G, J. Supercrit. Fluids, 47(3), 373, 2009
  19. Du ZY, Mohr M, Ma XC, Cheng YL, Lin XG, Liu YH, Zhou WG, Chen P, Ruan R, Bioresour. Technol., 120, 13, 2012
  20. Kang KY, Chun BS, Korean J. Chem. Eng., 21(3), 654, 2004
  21. Kang KY, Chun BS, Korean J. Chem. Eng., 21(6), 1147, 2004
  22. Valdez PJ, Nelson MC, Wang HY, Lin XXNN, Savage PE, Biomass Bioenerg., 46, 317, 2012
  23. Lopez CVG, Garcia MDC, Fernandez FGA, Bustos CS, Chisti Y, Sevilla JMF, Bioresour. Technol., 101(19), 7587, 2010
  24. Lowry OH, Rosebrough NJ, Farr AW, Randall RJ, J. Biol. Chem., 193, 265, 1951
  25. Bower CE, Holm-Hassen T, Can. J. Fish. Aquat. Sci., 37, 794, 1980
  26. APHA, AWWA, and WEF (American Public Health Association, American Water Works Association, and Water Environment Federation), Standard Methods for the Examination of Water and Wastewater, Colorado, 1998
  27. Montgomery DC, Design and analysis of experiments, Wiley, New York, USA, 1972
  28. Akiya N, Savage PE, Chem. Rev., 102(8), 2725, 2002