Issue
Korean Journal of Chemical Engineering,
Vol.32, No.1, 62-67, 2015
Comparison of different applied voltage waveforms on CO2 reforming of CH4 in an atmospheric plasma system
Sinusoidal and pulse waveforms of applied voltage were employed for CO2 reforming of CH4 to syngas in an atmospheric dielectric barrier discharge reactor. The discharge power of a pulse waveform was higher than that of sinusoidal waveform at the same applied voltage. The plasma reaction by a pulse waveform enhanced the conversion of CO2 and CH4 and the selectivity of H2 and CO. It was confirmed that CO2 reforming of CH4 can be improved by the a daption of pulse-type power supply in a dielectric barrier discharge reactor immersed in an electrically insulating oil bath.
[References]
  1. Rostrup-Nielsen JR, Catal. Today, 63(2-4), 159, 2000
  2. Bradford MCJ, Vannice MA, Catal. Rev.-Sci. Eng., 41(1), 1, 1999
  3. Martinez R, Romero E, Guimon C, Bilbao R, Appl. Catal. A: Gen., 274(1-2), 139, 2004
  4. Tao XM, Bai MG, Wu QY, Huang ZJ, Yin YX, Dai XY, Int. J. Hydrog. Energy, 34(23), 9373, 2009
  5. Indarto A, Choi JW, Lee H, Song HK, Energy, 31(14), 2986, 2006
  6. Tao X, Bai M, Li X, Long H, Shang S, Yin Y, Dai X, Prog. Energy Combust. Sci., 37, 113, 2011
  7. Long HL, Shang SY, Tao XM, Yin YP, Dai XY, Int. J. Hydrog. Energy, 33(20), 5510, 2008
  8. Tu X, Gallon HJ, Twigg MV, Gorry PA, Whitehead JC, J. Phys. D: Appl. Phys., 44, 274007, 2011
  9. Promaros E, Assabumrungrat S, Laosiripojana N, Praserthdam P, Tagawa T, Goto S, Korean J. Chem. Eng., 24(1), 44, 2007
  10. Luna AEC, Iriarte ME, Appl. Catal. A: Gen., 343(1-2), 10, 2008
  11. Gallon HJ, Tu X, Twigg MV, Whitehead JC, Appl. Catal. B: Environ., 106(3-4), 616, 2011
  12. Le H, Lobban LL, Mallinson RG, Catal. Today, 89(1-2), 15, 2004
  13. Liu DP, Lau R, Borgna A, Yang YH, Appl. Catal. A: Gen., 358(2), 110, 2009
  14. Hwang BB, Yeo YK, Na BK, Korean J. Chem. Eng., 20(4), 631, 2003
  15. Wang Q, Yan BH, Jin Y, Cheng Y, Plasma Chem. Plasma Process., 29(3), 217, 2009
  16. Kim TK, Lee WG, J. Ind. Eng. Chem., 18(5), 1710, 2012
  17. Chen X, Marquez M, Rozak J, Marun C, Luo J, Suib SL, Hayashi Y, Matsumoto H, J. Catal., 178(1), 372, 1998
  18. Li Y, Xu GH, Liu CJ, Eliasson B, Xue BZ, Energy Fuels, 15(2), 299, 2001
  19. Yao SL, Nakayama A, Suzuki E, AIChE J., 47(2), 419, 2001
  20. Brock SL, Shimojo T, Suib SL, Hayashi Y, Matsumoto H, Res. Chem. Intermed., 28, 13, 2002
  21. Sarmiento B, Brey JJ, Viera IG, Gonzalez-Elipe AR, Cotrino J, Rico VJ, J. Power Sources, 169(1), 140, 2007
  22. Rico VJ, Hueso JL, Cotrino J, Gonzalez-Elipe AR, J. Phys. Chem. A, 114(11), 4009, 2010
  23. Yao SL, Nakayama A, Suzuki E, AIChE J., 47(2), 413, 2001
  24. Goujard V, Tatibouet JM, Batiot-Dupeyrat C, IEEE Trans. Plasma Sci., 37, 2342, 2009
  25. Benard N, Moreau E, Appl. Phys. Lett., 100, 193503, 2012
  26. Song HK, Lee H, Choi JW, Na BK, Plasma Chem. Plasma Process., 24(1), 57, 2004
  27. Lee H, Lee CH, Choi JW, Song HK, Energy Fuels, 21(1), 23, 2007
  28. Nguyen DB, Lee WG, J. Ind. Eng. Chem., 20(3), 972, 2014
  29. Zhou LM, Xue B, Kogelschatz U, Eliasson B, Energy Fuels, 12(6), 1191, 1998
  30. Hammer T, Kappes T, Baldauf M, Catal. Today, 89(1-2), 5, 2004
  31. Nozaki T, Miyazaki Y, Unno Y, Okazaki K, J. Phys. D: Appl. Phys., 34, 3383, 2001
  32. Li DH, Li X, Bai MG, Tao XM, Shang SY, Dai XY, Yin YX, Int. J. Hydrog. Energy, 34(1), 308, 2009
  33. Tao XM, Qi FW, Yin YP, Dai XY, Int. J. Hydrog. Energy, 33(4), 1262, 2008
  34. Zhang YP, Li Y, Wang Y, Liu CJ, Eliasson B, Fuel Process. Technol., 83(1-3), 101, 2003
  35. Tu X, Whitehead JC, Appl. Catal. B: Environ., 125, 439, 2012
  36. Snoeckx R, Aerts R, Tu X, Bogaerts A, J. Phys. Chem. C, 117, 4957, 2013
  37. Gallon HJ, Tu X, Whitehead JC, Plasma Process. Polym., 9, 90, 2012