Issue
Korean Journal of Chemical Engineering,
Vol.32, No.1, 20-29, 2015
Analysis of the dynamics of a packed column using semi-empirical models: Case studies with the removal of hexavalent chromium from effluent wastewater
The dynamics of a packed bed, used for handling enormous quantities of effluent wastewater from industrial discharge, is a very important issue from a design point of view. Semi empirical Thomas and BDST Models are applied to analyze the dynamic behavior of packed beds filled in with GAC and PAC. Variations in breakthroughs with respect to exhaustion time, various bed depths, flow rates and influent solute concentrations are studied. The linearized BDST model gives very high values of R2=0.9959 (for 20% breakthrough) and R2=0.9578 (for 85% breakthrough), indicating the validity of the model for the present column system for both 20 and 85% of breakthroughs. For breakthroughs, below the 50% saturation, the BDST model is used to estimate the design of columns with various scale-ups of the process for other flow rates and initial adsorbate concentrations without any additional experiments. BDST coefficients of lower breakthroughs, below 50%, can also be used for evaluating other parameters such as critical bed depth, adsorption capacity and rate constant. The values of BDST constants, N0 and K, are not affected by changing flow rates for a particular adsorbent combination and changing influent concentrations. The validity of the Thomas model is ensured by the high R2 values, ranging from 0.855 to 0.925, while estimating the Thomas kTh and q0.
[References]
  1. Rojas G, Silva J, Flores JA, Rodriguez A, Ly M, Maldonado H, Sep. Purif. Technol., 44(1), 31, 2005
  2. Acharya J, Sahu JN, Sahoo BK, Mohanty CR, Meikap BC, Chem. Eng. J., 150(1), 25, 2009
  3. Kalidhasan S, Ganesh M, Sricharan S, Rajesh N, J. Hazard. Mater., 165(1-3), 886, 2009
  4. Costa M, Toxcol. Appl. Pharm., 188, 1, 2003
  5. Baral SS, Das SN, Rath P, Chaudhury R, Biochem. Eng. J., 34, 69, 2007
  6. Srivastava S, Ahmad AH, Thakur IS, Bioresour. Technol., 98(5), 1128, 2007
  7. Dupont L, Guillon E, Environ. Sci. Technol., 37, 4235, 2003
  8. Fendorf S, Wielinga BW, Hansel CM, Int. Geol. Rev., 42, 691, 2000
  9. Han X, Wong YS, Wong MH, Tam NFY, J. Hazard. Mater., 146(1-2), 65, 2007
  10. Ouki SK, Neufeld RD, J. Chem. Technol. Biotechnol., 70(1), 3, 1997
  11. Altundogan HS, Process. Biochem., 40, 1443, 2005
  12. Zhou X, Korenaga T, Takahashi T, Moriwake T, Shinoda S, Water Res., 27, 1049, 1993
  13. Shaalan H, Sorour M, Tewfik S, Desalination, 14, 315, 2001
  14. Rengaraj S, Joo CK, Kim Y, Yi J, J. Hazard. Mater., 102(2-3), 257, 2003
  15. Fadali OA, Magdy YH, Daifullah AAM, Ebrahiem EE, J. Environ. Sci. Health Part A, Toxic/ Hazard Subst. Environ. Eng., 39, 465, 2004
  16. Rajesh N, Jalan RK, Hotwany P, J. Hazard. Mater., 150, 723, 2008
  17. Zhao NQ, Wei N, Li JJ, Qiao ZJ, Cui J, He F, Chem. Eng. J., 115(1-2), 133, 2005
  18. El Nemr A, Khaled A, Abdelwahab O, El-Sikaily A, J. Hazard. Mater., 152(1), 263, 2008
  19. Duranoglu D, Trochimczuk AW, Beker U, Chem. Eng. J., 187, 193, 2012
  20. Malkoc E, Nuhoglu Y, Chem. Eng. Sci., 61(13), 4363, 2006
  21. Weber TW, Chakravorti RK, AIChE J., 20, 228, 1974
  22. Sharma DC, Forster CF, Process Biochem., 31(3), 213, 1996
  23. Sarin V, Singh TS, Pant KK, Bioresour. Technol., 97(16), 1986, 2006
  24. Boharts G, Adam EN, J. Am. Chem. Soc., 42, 523, 1920
  25. McKay G, Bino MJ, Water Environ. Pollut., 66, 33, 1990
  26. MURALEEDHARAN TR, PHILIP L, IYENGAR L, VENKOBACHAR C, Bioresour. Technol., 49(2), 179, 1994
  27. Lehman M, Zouboulis AI, Matis KA, Environ. Pollut., 113, 121, 2001
  28. Kratochvil D, Volesky B, Water Res., 34, 3186, 2000
  29. Vijayaraghavan K, Prabu D, J. Hazard. Mater., 137(1), 558, 2006
  30. Ayoob S, Gupta AK, Bhakat PB, Sep. Purif. Technol., 52(3), 430, 2007
  31. Zulfadhly Z, Mashitan MD, Bhatia S, Environ. Pollut., 112, 463, 2001
  32. Ko DCK, Porter JF, McKay G, Chem. Eng. Sci., 55(23), 5819, 2000
  33. Hutchins R, J. Chem. En. Lond., 81, 133, 1973
  34. Kobya M, Bioresour. Technol., 91(3), 317, 2004
  35. Sankararamakrishnan N, Kumar P, Chauhan VS, Sep. Purif. Technol., 63(1), 213, 2008
  36. Vijayaraghavan K, Jegan J, Palanivelu K, Velan M, Chem. Eng. J., 106(2), 177, 2005
  37. Netpradith S, Thiravetyan P, Towprayoon S, Water Res., 38, 71, 2004
  38. Othman MZ, Roddick FA, Snow R, Water Res., 35, 2943, 2001
  39. Goel J, Kadirvelu K, Rajagopal C, Garg VK, J. Hazard. Mater., 125(1-3), 211, 2005
  40. Kumar PA, Chakraborty S, J. Hazard. Mater., 162(2-3), 1086, 2009
  41. Thomas HC, J. Am. Chem. Soc., 66, 1466, 1944
  42. Aksu Z, Cagatay SS, Sep. Purif. Technol., 48(1), 24, 2006
  43. Han R, Wang Y, Yu W, Zou W, Shi J, Lui H, J. Hazard. Mater., 139, 513, 2006
  44. Unuabonah EI, Olu-Owolabi BI, Fasuyi EI, Adebowale KO, J. Hazard. Mater., 179(1-3), 415, 2010
  45. Suksabye P, Thiravetyan P, Nakbanpote W, J. Hazard. Mater., 160(1), 56, 2008
  46. Aksu Z, Gonen F, Process. Biochem., 39, 599, 2004
  47. Fu Y, Viraraghavan T, Water SA, 29, 465, 2003
  48. Malkoc E, Nuhoglu Y, Abali Y, Chem. Eng. J., 119(1), 61, 2006
  49. Rao JR, Viraraghavan T, Bioresour. Technol., 85(2), 165, 2002
  50. Easton AD, Clesceri LS, Greenberg AE, Standard methods for the examination of water and wastewater, Standard Methods, (APHA, AWWA, WEF) 17th Ed., 1989
  51. Huang MC, Chou CH, Teng HS, AIChE J., 48(8), 1804, 2002
  52. Aksu Z, Cagatay SS, Gonen F, J. Hazard. Mater., 143(1-2), 362, 2007
  53. Singha S, Sarkar U, Mondal S, Saha S, Desalination, 297, 48, 2012
  54. Saha S, Sarkar U, Mondal S, Desali. Water Treat., 37, 277, 2012