Issue
Korean Journal of Chemical Engineering,
Vol.31, No.11, 2070-2076, 2014
Optimization of decoloring conditions of crude fatty acids recovered from crude glycerol by acid-activated clay using response surface method
Crude glycerol, a by-product of the biodiesel production process, contains a high amount of fatty acids that cannot be used directly without removing the strong dark color. This study aims to remove the color impurities in crude fatty acids, prepared by acid-precipitation and hexane extraction, using acid-activated clay as an adsorbent. The effects of bleaching temperature, contact time, the amount of acid-activated clay, and concentration of color impurities were investigated. No significant effects of bleaching temperature or contact time were observed. In an optimization study using the central composite design, complete decolorization was achieved at an optimized condition, in which 3.5 g of clay was added to 10mL of crude fatty acid solution with an optical density at 373 nm of 20. Notably, more than 80% of the peroxides was concurrently removed. However, a 37% loss in fatty acids was observed during decolorization. The clay was repeatedly used without loss of adsorption capability if it was calcined at 600 ℃ after use.
[References]
  1. Thomson JC, He BB, Appl. Eng. Agr., 22, 261, 2006
  2. Yang F, Hanna MA, Sun R, Biotechnol. Biofuels, 5, 13, 2012
  3. Pyle DJ, Garcia RA, Wen Z, J. Agric. Food Chem., 56, 3933, 2008
  4. Venkataramanan KP, Boatman JJ, Kurniawan Y, Taconi KA, Bothun GD, Scholz C, Appl. Microbiol. Biotechnol., 93(3), 1325, 2012
  5. Alvarez AMR, Rodriguez MLG, Fasc., 51, 74, 2000
  6. Ibrahim SA, Li SK, Pharm. Res., 27, 115, 2010
  7. Maki-Arvela P, Kuusisto J, Sevilla EM, Simakova I, Mikkola JP, Myllyoja J, Salmi T, Murzin DY, Appl. Catal. A: Gen., 345(2), 201, 2008
  8. Gonus P, Wille HJ, US Patent, 5,401,862, 1995
  9. Worasith N, Goodman BA, Jeyashoke N, Thiravetyan P, J. Am. Oil Chem. Soc., 88, 2005, 2011
  10. Makhoukhi B, Didi MA, Villemin D, Azzouz A, Grasas Y. Aceites, 60, 343, 2009
  11. Hussin F, Aroua MK, Daud WMAW, Chem. Eng. J., 170(1), 90, 2011
  12. Wanasundara UN, Shahidi F, Food Chem., 65, 41, 1999
  13. Hu S, Lu X, Wan C, Li Y, J. Agric. Food Chem., 60, 5915, 2012
  14. Arudi RL, Sutherland MW, Bielski BHJ, J. Lipid Res., 24, 485, 1983
  15. Holman RT, Lundberg WO, Lauer WM, Burr GO, J. Am. Chem. Soc., 67, 1285, 1945
  16. Mohammed C, Alhassan Y, Yargamji GI, Garba S, Bello Z, Ifeyinwa AI, J. Basic. Appl. Chem., 1, 80, 2011
  17. Usman MA, Ekwueme VI, Alaje TO, Mohammed AO, ISRM Ceramics, 5, 2012
  18. Joy NAB, Richard K, Pierre NJ, J. Appl. Sci., 7, 2462, 2007
  19. Langmaack T, Eggers R, Eur. J. Lipid Sci. Technol., 104, 98, 2002
  20. Achife EC, Ibemesi J, J. Am. Oil Chem. Soc., 66, 247, 1989
  21. Ahuja SK, Ferreira GM, Moreira AR, Biotechnol. Bioeng., 85(6), 666, 2004
  22. Huang L, Lu Z, Yuan Y, Lu F, Bie X, J. Ind. Microbiol. Biotechnol., 33, 55, 2006
  23. Klein-Szanto AJP, Slaga TJ, J. Invest. Dermatol., 79, 30, 1982
  24. Ganceviciene R, Liakou AI, Theodoridis A, Makrantonaki E, Zouboulis CC, Dermato-Endocrinology, 4, 308, 2012
  25. Lewis II JA, Dinardo JC, McDaniel DH, Cosmet. Dermatol., 22, 576, 2009
  26. Meesuk L, Seammai S, ScienceAsia., 36, 33, 2010
  27. Falaras P, Kovanis I, Lezou F, Seiragakis G, Clay Minerals, 34, 221, 1999
  28. Sari A, Ipyldak O, Bull. Chem. Soc. Ethiop., 20, 259, 2006
  29. Rogan KR, Colloid. Polym. Sci., 272, 82, 1994
  30. Foletto EL, Alves CCA, Sganzerla LR, Porto LM, Latin American Applied Research, 32, 205, 2002
  31. Boukerroui A, Ouali MS, J. Chem. Technol. Biotechnol., 75(9), 773, 2000
  32. Low KS, Lee CK, Kong LY, J. Chem. Technol. Biotechnol., 72(1), 67, 1998